Inability to assess the safety of iodine-enriched yeast added for nutritional purposes as a source of iodine in food supplements and the bioavailability of iodine from this source, based on the supporting dossier

Scientific Statement of the Panel on Food Additives and Nutrient Sources added to Food (ANS)

(Question No EFSA-Q-2005-201)

Adopted on 29 April 2009

PANEL MEMBERS

1 For citation purposes: Scientific Statement of the Panel on Food Additives and Nutrient Sources added to Food on the inability to assess the safety of iodine-enriched yeast added for nutritional purposes as a source of iodine in food supplements and the bioavailability of iodine from this source based on the supporting dossier following a request from the European Commission. The EFSA Journal (2009) 1069, 1-6.
Inability to assess the safety of iodine-enriched yeast added for nutritional purposes as a source of iodine in food supplements

BACKGROUND AS PROVIDED BY THE COMMISSION

The European Community legislation lists nutritional substances that may be used for nutritional purposes in certain categories of foods as sources of certain nutrients.

The Commission has received a request for the evaluation of iodine-enriched yeast added for nutritional purposes to food supplements. The relevant Community legislative measure is:

TERMS OF REFERENCE AS PROVIDED BY THE COMMISSION

In accordance with Article 29 (1) (a) of Regulation (EC) No 178/2002, the European Commission asks the European Food Safety Authority to provide a scientific opinion, based on its consideration of the safety and bioavailability of iodine-enriched yeast added to food supplements.

STATEMENT

1. **Summary of information provided in the supporting dossier on iodine-enriched yeast**

Iodine-enriched yeast is derived from cultures of specified strains of *Saccharomyces cerevisiae* grown in the presence of potassium iodide. Fermentation takes place at a specified temperature and pressure for defined periods of time. This is followed by increasing the temperature to kill the yeast. The cell wall is ruptured enzymatically to release the contents which are then spray dried.

The petitioner has provided some general information on the manufacturing process, but no details on the procedures used to produce iodine-enriched yeast are provided.

According to the petitioner, iodine in iodine-enriched yeast is naturally integrated by the growing yeast into its own structure and occurs therefore, in the way iodine would be present in any food material.

The petitioner states that during fermentation in the presence of iodine, a specific strain of *Saccharomyces cerevisiae* produces specific forms of iodine, the metabolic fate and the biological distribution of which are similar to those produced in other species.

The petitioner states that the integration will be chemically multi-formatted by the organism and therefore, its chemical name, formula, chemical family and CAS Registry Number is undefined. Further details on the characterisation of the fermentation products to demonstrate that the expected forms of iodine are present in the enriched yeast were not provided.

A comparative C:H:N analysis and the X-ray Photoelectron Spectra (XPS) for both the starter yeast and the iodine-enriched yeast have been provided.

Iodine-enriched yeast is described as an amorphous hygroscopic cream-coloured powder with a slight yeast odour which is water soluble at 20 °C.

According to the petitioner, iodine is present at 1.5% of the source. The majority of the remaining 98.5% is made up of enzymatically ruptured yeast cells consisting of 41% carbohydrate, 34% protein and 8% lipid. The loss on drying is 6% and the ash content is 10 %.

The petitioner also provides microbiological specifications. Specifications for lead, mercury, cadmium and arsenic are not provided.

Use levels for the iodine-enriched yeast are not provided. The petitioner only indicates that iodine-enriched yeast is to be used to provide a source of iodine supplied as a nutrient in food supplements. According to the petitioner, the quantities added to the food supplements are product-dependent, but because of the improved bioavailability are generally lower than those found in other sources of iodine.

No data were provided on the bioavailability of iodine from iodine-enriched yeast or on the safety of the source.
2. Assessment

The Panel notes that *Saccharomyces cerevisiae* has a qualified presumption of safety (EFSA, 2008) but considers that this presumption of safety might not be applicable to the specific conditions of culture of the yeast in presence of a high quantity of iodine.

According to the petitioner, fermentation in the presence of iodine within eukaryotic cells will produce organic iodine compounds similar to those produced *in vivo* in other species. Further characterisation of the fermentation product demonstrating that the expected organic iodine compounds would be present was not provided.

According to the petitioner, the difference in the C:H:N ratio between the starter yeast and the iodine-enriched yeast supports the hypothesis that changes within the yeast due to the complexing of the mineral into the internal structure of the yeast may have modified the overall composition of the yeast. However the Panel considers that the C:H:N analysis is not relevant to compare the starter yeast and the iodine-enriched yeast and that such a difference in the C:H:N ratio would not in any case provide a clear evidence of complexing or change in the structure. Furthermore, the comparative C:H:N analysis did not show any difference in the C:H:N ratio of the starter yeast and the iodine-enriched yeast.

According to the petitioner, carbohydrate and protein contents of iodine-enriched yeast and the starter yeast are significantly different suggesting that the yeast alters its metabolism as a result of incorporating the iodine into the cell structure. The Panel considers that such finding is not conclusive and that other organic material used in the manufacturing process, such as soya, nutrient organic media and added plant enzymes can also influence the difference in the carbohydrate and protein contents.

The Panel considers that the XPS spectra provided can give some information on the content of the crystal compounds in enriched yeast, but do not provide a significant contribution to the chemical characterisation of the product.

The description of the manufacturing process used to produce iodine-enriched yeast was also insufficient to characterise the product.

According to the petitioner, iodine-enriched yeast is safe. Although not explicitly stated in the dossier, the argument for the safety of iodine-enriched yeast appears to be based on iodine being a normal constituent of the diet, and the long history of use of *Saccharomyces cerevisiae* in fermented food and beverages. The assumption is that, provided there is no overload of normal metabolic pathways, fermentation within eukaryotic cells will produce organic iodine compounds similar to those produced *in vivo* in other species.

The Panel notes that the petitioner has insufficiently characterised the product and therefore has not demonstrated that the organic iodine compounds are similar to those present in the diet, that there is no overload of normal metabolic pathways leading to unexpected metabolic products.

The Panel notes that it was not possible to assess the bioavailability of iodine from iodine-enriched yeast since neither data nor suitable supporting references were provided.
CONCLUSIONS

The Panel concludes that due to the lack of an appropriate dossier supporting the use of iodine-enriched yeast in food supplements, the bioavailability of iodine from iodine-enriched yeast and the safety of iodine-enriched yeast cannot be assessed.

Key words:
Food supplements, iodine, biotransformed iodine, yeast-transformed iodine, iodine-enriched yeast.

DOCUMENTATION PROVIDED TO EFSA

REFERENCES

ACKNOWLEDGEMENTS

Glossary / Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS</td>
<td>Panel on Food Additives and Nutrient Sources added to Food</td>
</tr>
<tr>
<td>CAS</td>
<td>Chemical Abstracts Service</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray Photoelectron Spectra</td>
</tr>
</tbody>
</table>