SCIENTIFIC OPINION

Inability to assess the safety of pantothenic acid-enriched yeast added for nutritional purposes as a source of pantothenic acid in food supplements and the bioavailability of pantothenic acid from this source, based on the supporting dossier

Scientific Statement of the Panel on Food Additives and Nutrient Sources added to Food

(Question No EFSA-Q-2005-212)

Adopted on 04 June 2009

PANEL MEMBERS

1 For citation purposes: Scientific Statement of the Panel on Food Additives and Nutrient Sources added to Food on the inability to assess the safety of pantothenic acid-enriched yeast added for nutritional purposes as a source of pantothenic acid in food supplements and the bioavailability of pantothenic acid from this source based on the supporting dossier following a request from the European Commission. The EFSA Journal (2009) 1125, 1-6.
BACKGROUND AS PROVIDED BY THE EUROPEAN COMMISSION

The European Community legislation lists nutritional substances that may be used for nutritional purposes in certain categories of foods as sources of certain nutrients.

The Commission has received a request for the evaluation of pantothenic acid-enriched yeast added for nutritional purposes to food supplements. The relevant Community legislative measure is:

TERMS OF REFERENCE AS PROVIDED BY THE EUROPEAN COMMISSION

In accordance with Article 29 (1) (a) of Regulation (EC) No 178/2002, the European Commission asks the European Food Safety Authority to provide a scientific opinion, based on its consideration of the safety and bioavailability of pantothenic acid-enriched yeast added to food supplements.

STATEMENT

1. Introduction

Following a request from the European Commission to the European Food Safety Authority (EFSA), the Scientific Panel on Food Additives and Nutrient Sources added to Food (ANS) was asked to provide a scientific opinion on the safety of pantothenic acid-enriched yeast added for nutritional purposes as a source of pantothenic acid in food supplements and on the bioavailability of pantothenic acid from this source.

2. Summary of the information provided in the supporting dossier on pantothenic acid-enriched yeast

Pantothenic acid-enriched yeast is derived from cultures of specified strains of Saccharomyces cerevisiae grown in the presence of calcium pantothenate. Fermentation takes place at a specified temperature and pressure for defined periods of time. This is followed by increasing the temperature to kill the yeast. The cell wall is ruptured enzymatically to release the contents which are then spray dried.

The petitioner has provided some general information on the manufacturing process, but no details on the procedures used to produce pantothenic acid-enriched yeast are provided.

According to the petitioner, pantothenic acid in pantothenic acid-enriched yeast is naturally integrated by the growing yeast into its own structure and occurs therefore, in the way pantothenic acid would be present in any food material.

The petitioner states that during fermentation in the presence of calcium pantothenate, a specific strain of Saccharomyces cerevisiae produces specific pantothenic acid compounds, the metabolic fate and the biological distribution of which are similar to those from other sources of pantothenic acid in the diet.

The petitioner states that “the integration will be chemically multi-formatted by the organism and therefore, its chemical name, formula, chemical family and CAS Registry Number is undefined”.

Comparative Fourier Transform Infrared (FTIR) spectra of the starter yeast, pantothenic acid, pantothenic acid-enriched yeast, and a simple mixture of yeast and pantothenic acid have been provided.

Pantothenic acid-enriched yeast is described as an amorphous hygroscopic cream-coloured powder with a slight yeast/citrus odour which is water soluble at 20 °C.

According to the petitioner, pantothenic acid is present at 25% of the source. The remaining 75% is made up of enzymatically ruptured yeast cells.

The petitioner also provides microbiological specifications. Specifications for lead, mercury, cadmium and arsenic are not provided.

Specific proposals for use levels for the pantothenic acid-enriched yeast were not provided. The petitioner only indicates that pantothenic acid-enriched yeast is to be used to provide a source of pantothenic acid supplied as a nutrient in food supplements. According to the petitioner the quantities added to the food supplements are product dependent, but because of
the improved bioavailability are generally lower than those found in other sources of pantothenic acid.

No data were provided on the bioavailability of pantothenic acid from pantothenic acid-enriched yeast or on the safety of the source.

3. **Assessment**

The Panel notes that *Saccharomyces cerevisiae* has a qualified presumption of safety (EFSA, 2008) but considers that this presumption of safety might not be applicable to the specific conditions of culture of the yeast in the presence of a high quantity of pantothenic acid.

According to the petitioner fermentation in the presence of calcium pantothenate within eukaryotic cells will produce pantothenic acid complexes not further defined, but with a metabolic fate and biological distribution similar to those of other sources of pantothenic acid in the diet.

According to the petitioner, from the comparative FTIR spectra it can be deduced that pantothenic acid is in ‘biological complex formation’ with yeast. The Panel considers that the FTIR spectra provided do not demonstrate the existence of such complexes.

According to the petitioner, pantothenic acid from pantothenic acid-enriched yeast is safe. Although not explicitly stated in the dossier the argument for the safety of pantothenic acid-enriched yeast appears to be based on pantothenic acid being a normal constituent of the diet, and the long history of use of *Saccharomyces cerevisiae* in fermented food and beverages. The assumption is that, provided there is no overload of normal metabolic pathways, fermentation within eukaryotic cells will produce pantothenic acid complexes, the metabolic fate and the biological distribution of which are similar to those of other sources of pantothenic acid in the diet.

The Panel notes that the petitioner has insufficiently chemically characterised the product and therefore has not demonstrated that the pantothenic acid complexes have a metabolic fate and biological distribution similar to those from other sources of pantothenic acid in the diet.

The Panel also notes that it was not possible to assess the bioavailability of pantothenic acid from pantothenic acid-enriched yeast since neither data nor suitable supporting references were provided.

The Panel further notes that neither safety data nor suitable supporting references were provided to support the assumption of safety of pantothenic acid-enriched yeast.

CONCLUSIONS

The Panel concludes that due to the lack of an appropriate dossier supporting the use of pantothenic acid-enriched yeast in food supplements, the bioavailability of pantothenic acid from pantothenic acid-enriched yeast and the safety of pantothenic acid-enriched yeast cannot be assessed.
Inability to assess the safety of pantothenic acid-enriched yeast
as a source of pantothenic acid in food supplements

Key words:
Food supplements, pantothenic acid, yeast-transformed pantothenic acid, pantothenic acid-enriched yeast

DOCUMENTATION PROVIDED TO EFSA

REFERENCES

ACKNOWLEDGEMENTS
Inability to assess the safety of pantothenic acid-enriched yeast as a source of pantothenic acid in food supplements

GLOSSARY / ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS</td>
<td>Panel on Food Additives and Nutrient Sources added to Food</td>
</tr>
<tr>
<td>CAS</td>
<td>Chemical Abstracts Service</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared</td>
</tr>
</tbody>
</table>