17th Scientific conference of the Bulgarian focal point of EFSA – May 2025

EMERGING VECTOR BORNE DISEASES AND CLIMATE CHANGE: EXAMPLE OF RIFT VALLEY FEVER

Alessandro Broglia

EFSA

Biological Hazards & Animal Health and Welfare Unit

RIFT VALLEY FEVER

RVF assessment by EFSA:

- Epidemiological update and Risk of introduction into EU
- RA on effectiveness of prevention and control measures in Mayotte and EU in case of incursion

RIFT VALLEY FEVER

Mosquito-borne
viral disease of
ruminants and humans

>> serious zoonosis

Classified as ECDC NORMAL

RIFT VALLEY FEVER

- ✓ Aedes and Culex mosquitoes (main vector species)
- ✓ transovarian (vertical) transmission in vectors
- √ inter epidemics period (5-15 years)
- ✓ Death or abortion of ruminants, high impact in young animals
- ✓ Humans infected with animals and animal products
- ✓ Expanding from Africa

RIFT VALLEY FEVER – SEROPOSITIVITY

Classified as ECDC NORMAL

RIFT VALLEY FEVER – MAYOTTE EPIDEMICS 2018-2019 (FRANCE)

CURRENT DISTRIBUTION OF AEDES INVASIVE MOSQUITOES

CURRENT DISTRIBUTION OF CULEX PIPIENS MOSQUITOES

Source: Vectornet (EFSA/ECDC)

FUTURE POTENTIAL SPREAD OF AEDES AEGYPTI IN EUROPE

- temperature, rainfall and humidity
- climate change
- weather
- anthropogenic factors: land use, human mobility and behaviour

ENDEMICITY VS. EPIDEMIC SPREAD OF RVF

where does the virus "overwinter" in the interepidemic period?

- Transovarial transmission in the eggs of Aedes spp. floodwater mosquitoes
- Continuous transmission throughout the year to animals in endemic regions in Africa where climate and environmental conditions favour mosquito breeding and transmission year round.

RIFT VALLEY FEVER – RISK OF INTRODUCTION

Possible pathways of introduction to EU:

- ✓ infected animals: uncontrolled movements
- ✓ infected vectors: imported or active movement
- ✓ contaminated products : fresh products
- ✓ infected humans : dead-end hosts

RIFT VALLEY FEVER - RISK OF INTRODUCTION

Methodology: Mint RISK model

RIFT VALLEY FEVER – RISK OF INTRODUCTION

civil flights from countries that have reported RVF

RIFT VALLEY FEVER – RISK OF INTRODUCTION

animal pathway: less than 0.002 epidemics/year (1 epidemic every 500 years, worst case scenario)

vector pathway:

- Netherlands: 0.0044 epidemics/year
- Malta: 0.0025 epidemics/year
- Belgium and Greece: 0.0014 epidemics/year
- Much lower for other MSs

- Diagnostic tests: RT PCR and ELISA
- Vaccines: live and inactivated
- Spread model to explore effectiveness of control measures
- > Example of NL

Comparison of some control strategies considering one possible spread

Probability of spread beyond a certain radius: surveillance zone size

Restriction zone			20 km		50 km		100 km
Mean vector dispersal	numbers of infected farms detected within the zone when implemented	R0=2	R0=6	R0=2	R0=6	R0=2	R0=6
5 km	1 10	0.17 0.84	0.42 1.0	0.001 0.01	0.003	8.6×10 ⁻⁸ 8.6×10 ⁻⁷	2.6×10 ⁻⁷ 2.6×10 ⁻⁶
10 km	10	0.56	0.91	0.01	0.03	0.001	0.003
10 km	10	1.0	1.0	0.55	0.91	0.099	0.03

COMMISSION DELEGATED REGULATION (EU) 2020/687

ANNEX V

MINIMUM RADIUS OF PROTECTION AND SURVEILLANCE ZONES

(as referred to in Article 21 of this Regulation)

Indicated as radius of a circle centred on the establishment

Protection Zone	Surveillance Zone	
3 km	10 km	
3 km	10 km	
20 km	50 km	
20 km	50 km	
Establishment	3 km	
3 km	10 km	
3 km	10 km	
Establishment	3 km	
100 km	150 km	
	3 km 20 km 20 km Establishment 3 km 3 km Establishment	

Key points:

- > In endemic areas control can be through vaccination
- In free areas: passive surveillance during vector season in risk areas of introduction
- > Vaccines: need of DIVA
- > Consider size of surveillance zone

ACKNOWLEDGEMENTS

- EFSA Panel on animal health and welfare
- EFSA Working group on RVF
- Ministère de l'Agriculture et de l'Alimentation, France
- CIRAD, France
- Coopadem Mayotte, France
- IRD-MIVEGEC, France
- GD Animal Health, NL
- Mayotte airport, France

THANK YOU FOR YOUR ATTENTION

