

CONCLUSION ON PESTICIDE PEER REVIEW

Conclusion on the peer review of the pesticide risk assessment of the active substance triflumizole¹

European Food Safety Authority²

European Food Safety Authority (EFSA), Parma, Italy

SUMMARY

Triflumizole is one of the 79 substances of the third stage part A of the review programme covered by Commission Regulation (EC) No 1490/2002³, as amended by Commission Regulation (EC) No 1095/2007⁴. In accordance with Article 10(1) of the Regulation, The Netherlands, being the designated rapporteur Member State (RMS), provided an initial evaluation of triflumizole in the format of a Draft Assessment Report (DAR), which was received by the EFSA on 4 January 2006. The Commission of the European Communities (hereafter referred to as 'the Commission') examined triflumizole in accordance with Article 11a of the Regulation and it was concluded that there were clear indications of harmful effects, leading to the adoption of a decision on non-inclusion in Annex I to Council Directive 91/414/EEC, in accordance with Articles 11f and 12 of the Regulation.

Following the Commission Decision of 20 September 2008 $(2008/748/EC)^5$ concerning the non-inclusion of triflumizole in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance, the applicant Certis made a resubmission application for the inclusion of triflumizole in Annex I in accordance with the provisions laid down in Chapter III of Commission Regulation (EC) No. 33/2008⁶. The resubmission dossier included further data in response to the issues identified in the conclusions leading to the Decision on non-inclusion, as set out in the Review Report (SANCO/1061/08 – rev.0).

In accordance with Article 18 of Commission Regulation (EC) No. 33/2008, The Netherlands, being the designated RMS, submitted an evaluation of the additional data in the format of an Additional Report. The Additional Report was received by the EFSA on 6 March 2009.

In accordance with Article 19 of Commission Regulation (EC) No. 33/2008, the EFSA distributed the Additional Report to Member States and the applicant(s) for comments on 10 March 2009. The EFSA collated and forwarded all comments received to the Commission on 14 April 2009.

In accordance with Article 20, following consideration of the Additional Report, the comments received, and where necessary the DAR, the Commission requested the EFSA to arrange a peer review in the area of Mammalian Toxicology and to deliver its conclusions on triflumizole.

The conclusions laid down in this report were reached on the basis of the evaluation of the representative uses of triflumizole as a fungicide on fruiting vegetables and ornamentals, as proposed by the applicant. Full details of the representative uses can be found in Appendix A to this report.

No areas of concern were identified in the physical and chemical properties section.

¹ On request from the European Commission, Question No EFSA-Q-2009-00610, issued on 4 December 2009.

² Correspondence: praper@efsa.europa.eu

³ OJ L224, 21.08.2002, p.25

⁴ OJ L 246, 21.9.2007, p. 19

⁵ OJ L 252, 20.09.2008, p.37

⁶ OJ L 15, 18.01.2008, p.5

Suggested citation: European Food Safety Authority; Conclusion on the peer review of the pesticide risk assessment of the active substance triflumizole. EFSA Journal 2009; 7(12):1415. [49 pp.]. doi:10.2903/j.efsa.2009.1415. Available online: www.efsa.europa.eu

No areas of concern were identified in the mammalian toxicology section.

In the residues area for the specific uses on fruiting vegetables the plant metabolism data are acceptable. The only outstanding issue is that the storage stability study shows that the residue is only stable for 1 month and residue trials have been stored for up to 3 months. This has implications for the risk assessment but it is not a critical area of concern.

The data available on fate and behaviour in the environment are sufficient to carry out the required environmental exposure assessments at the EU level for the applied for intended uses. The assessments are based on there being no soil exposure from these uses.

The ecotoxicology risk assessment indicated no critical areas of concern and the risk to all non-target organisms was addressed.

KEY WORDS

triflumizole, peer review, risk assessment, pesticide, fungicide

TABLE OF CONTENTS

Summary	. 1
Table of contents	. 3
Background	. 4
The active substance and the formulated product	. 7
Conclusions of the evaluation	. 7
1. Identity, physical/chemical/technical properties and methods of analysis	. 7
2. Mammalian toxicity	. 7
3. Residues	
4. Environmental fate and behaviour	. 8
5. Ecotoxicology	
6. Overview of the risk assessment of compounds listed in residue definitions for the environmenta	ıl
compartments 1	10
6.1. Soil	10
6.2. Ground water 1	10
6.3. Surface water and sediment 1	10
6.4. Air 1	11
List of studies to be generated, still ongoing or available but not peer reviewed 1	12
Particular conditions proposed to be taken into account to manage the risk(s) identified 1	12
Issues that could not be finalised 1	12
Critical areas of concern 1	12
References 1	13
Appendices 1	14
Abbreviations 4	47

BACKGROUND

Legislative framework

Commission Regulation (EC) No $1490/2002^7$, as amended by Commission Regulation (EC) No $1095/2007^8$ lays down the detailed rules for the implementation of the third stage of the work programme referred to in Article 8(2) of Council Directive 91/414/EEC. This regulates for the European Food Safety Authority (EFSA) the procedure for organising, upon request of the Commission of the European Communities (hereafter referred to as 'the Commission'), a peer review of the initial evaluation, i.e. the Draft Assessment Report (DAR), provided by the designated rapporteur Member State.

Commission Regulation (EC) No 33/2008⁹ lays down the detailed rules for the application of Council Directive 91/414/EEC for a regular and accelerated procedure for the assessment of active substances which were part of the programme of work referred to in Article 8(2) of Council Directive 91/414/EEC but which were not included in Annex I. This regulates for the EFSA the procedure for organising the consultation of Member States and the applicant(s) for comments on the Additional Report provided by the designated RMS, and upon request of the Commission the organisation of a peer review and/or delivery of its conclusions on the active substance.

Assessment conducted in accordance with Commission Regulation (EC) No 1490/2002

Triflumizole is one of the 79 substances of the third stage part A of the review programme covered by Commission Regulation (EC) No 1490/2002, as amended by Commission Regulation (EC) No 1095/2007.

In accordance with Article 10(1) of the Regulation, The Netherlands, being the designated rapporteur Member State (RMS), provided an initial evaluation of triflumizole in the format of a DAR (The Netherlands, 2006), which was received by the EFSA on 4 January 2006. In accordance with Article 11 of the Regulation, the EFSA dispatched the DAR to the Member States and the applicant Certis on 24 May 2006 for consultation and comments.

In accordance with the provisions of Article 11a of the Regulation the Commission examined triflumizole, following which it was concluded that there were clear indications of harmful effects, leading to the adoption of a decision on non-inclusion in Annex I to Council Directive 91/414/EEC, in accordance with Articles 11f and 12 of the Regulation.

Peer review conducted in accordance with Commission Regulation (EC) No 33/2008

Following the Commission Decision of 20 September 2008 $(2008/748/EC)^{10}$ concerning the noninclusion of triflumizole in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance, the applicant Certis made a resubmission application for the inclusion of triflumizole in Annex I in accordance with the provisions laid down in Chapter III of Commission Regulation (EC) No. 33/2008. The resubmission dossier included further data in response to the issues identified in the conclusions leading to the Decision on non-inclusion, as set out in the Review Report (SANCO/1061/08 – rev.0), as follows: the operator and worker exposure, the acute toxicity to birds, the acute toxicity to fish, the risk to mammals, the risk to non-target arthropods.

⁷ OJ L224, 21.08.2002, p.25

⁸ OJ L246, 21.9.2007, p.19

⁹ OJ L 15, 18.01.2008, p.5

¹⁰ OJ L 252, 20.09.2008, p.37

In accordance with Article 18, The Netherlands, being the designated RMS, submitted an evaluation of the additional data in the format of an Additional Report (The Netherlands, 2009a). The Additional Report was received by the EFSA on 6 March 2009.

In accordance with Article 19, the EFSA distributed the Additional Report to Member States and the applicant for comments on 10 March 2009. In addition, the EFSA conducted a public consultation on the Additional Report. The EFSA collated and forwarded all comments received to the Commission on 14 April 2009. At the same time, the collated comments were forwarded to the RMS for compilation in the format of a Reporting Table. The applicant was invited to respond to the comments in column 3 of the Reporting Table. The comments and the applicant's response were evaluated by the RMS in column 3.

In accordance with Article 20, following consideration of the Additional Report, the comments received, and where necessary the DAR, the Commission decided to further consult the EFSA. By written request, received by the EFSA on 20 May 2009, the Commission requested the EFSA to arrange a peer review in the area of Mammalian Toxicology and to deliver its conclusions on triflumizole within 6 months of the date of receipt of the request, subject to an extension of a maximum of 90 days where further information were required to be submitted by the applicant in accordance with Article 20(2).

The scope of the peer review and the necessity for additional information, not concerning new studies, to be submitted by the applicant in accordance with Article 20(2), was considered in a telephone conference between the EFSA, the RMS, and the Commission on 25 May 2009; the applicant was also invited to give its view on the need for additional information. On the basis of the comments received, the applicant's response to the comments, and the RMS' subsequent evaluation thereof, it was concluded that further information should be requested from the applicant in the areas of the plant metabolism and the residue definition set in the residue trials.

The outcome of the telephone conference, together with EFSA's further consideration of the comments is reflected in the conclusions set out in column 4 of the Reporting Table. All points that were identified as unresolved at the end of the comment evaluation phase and which required further consideration, including those issues to be considered in consultation with Member State experts, and the additional information to be submitted by the applicant, were compiled by the EFSA in the format of an Evaluation Table.

The conclusions arising from the consideration by the EFSA, and as appropriate by the RMS, of the points identified in the Evaluation Table, together with the outcome of the expert discussions where these took place, were reported in the final column of the Evaluation Table.

A final consultation on the conclusions arising from the peer review of the risk assessment took place with Member States via a written procedure in October - November 2009.

This conclusion report summarises the outcome of the peer review of the risk assessment on the active substance and the representative formulation evaluated on the basis of the representative uses as a fungicide on fruiting vegetables and ornamentals, as proposed by the applicant. A list of the relevant end points for the active substance as well as the formulation is provided in Appendix A. In addition, a key supporting document to this conclusion is the Peer Review Report, which is a compilation of the documentation developed to evaluate and address all issues raised in the peer review, from the initial commenting phase to the conclusion. The Peer Review Report (EFSA, 2009) comprises the following documents:

- the comments received on the DAR and the Additional Report
- the Reporting Table (revision 1-1; 26 May 2009),

- the Evaluation Table (2 December 2009),
- the report(s) of the scientific consultation with Member State experts (where relevant).

Given the importance of the DAR and the Additional Report including its addendum (compiled version of October 2009 containing all individually submitted addenda) (The Netherlands, 2009b) and the Peer Review Report, both documents are considered respectively as background documents A and B to this conclusion.

THE ACTIVE SUBSTANCE AND THE FORMULATED PRODUCT

Triflumizole is the ISO common name for (*E*)-4-chloro- α , α , α -trifluoro-*N*-(1-imidazol-1-yl-2-propoxyethylidene)-*o*-toluidine (IUPAC).

The representative formulated product for the evaluation was 'Rocket EC', an emulsifiable concentrate (EC) containing 150 g/L triflumizole, registered under different trade names in Europe.

The representative uses evaluated comprise indoor foliar spraying against powdery mildew in cucumber, courgette, gherkin, tomato and ornamentals growing on artificial substrate. Full details of the GAP can be found in the list of end points in Appendix A.

CONCLUSIONS OF THE EVALUATION

1. Identity, physical/chemical/technical properties and methods of analysis

Toluene was considered as a relevant impurity but, based on its hazard and the level proposed in the technical specification, does not give rise to significant toxicological concern. The batches tested in toxicological and ecotoxicological studies have been considered as representative to the proposed specification.

The main data regarding the identity of triflumizole and its physical and chemical properties are given in Appendix A.

The compounds in the residue definition for plants can be determined with a multi-residue method (DFG S19). Analytical methods for food of animal origin are not required as there is no intake by livestock. LC-MS/MS methods are available to monitor the compounds in the residue definition for water. Adequate analytical methods are available to monitor triflumizole residues in soil and air.

2. Mammalian toxicity

Triflumizole is "Harmful if swallowed" (proposed to be labelled R22); it is not acutely toxic via the dermal and inhalation routes. It is not a skin or eye irritant, but it is a skin sensitiser (proposed R43 "May cause sensitization by skin contact"). In all short-term studies increased liver weights, altered liver histopathology and decreased body weight gain were observed. The relevant NOAEL is 4.1 mg/kg bw/day based on liver findings in a 13-wk study in rats. Triflumizole does not possess genotoxic and reproductive toxicity potential (the reproductive, parental and offspring NOAELs were likewise set at 4.8 mg/kg bw/day, whereas the maternal and developmental NOAELs were 10 mg/kg bw/day in rats and 100 mg/kg bw/day in rabbits). Triflumizole is not a carcinogen; the relevant NOAEL for long-term systemic effects in rats is 3.5 mg/kg bw/day based on liver effects; the long term toxicity NOAEL in mice is 16 mg/kg bw/day. Some indications of neurotoxicity potential of triflumizole were noted (e.g. in the 2 year rat study, convulsions only at high dose levels). The ADI and AOEL are 0.05 mg/kg bw/day, and the ARfD is 0.1 mg/kg bw. The operator and worker exposure in greenhouses is below the AOEL (with the use of PPE for the operator only). No bystander exposure is expected.

3. Residues

The residue definition for plants is based on a foliar applied grape metabolism study which is supported by a foliar applied cucumber metabolism study. Two other metabolism studies on apple and pear are not relied on. The grape metabolism study was only conducted at 1N for a single application whereas the representative uses have up to 6 applications. In this case it can be considered acceptable as the supported crops are continuously harvested and the accumulation of unidentified metabolites is

unlikely to occur. It is also for this reason that it can be accepted that there is no imidazole label in the metabolism studies. However, the metabolism data are only acceptable for fruiting vegetables and not for fruit crops in general. The main component of the residue was triflumizole and to a lesser extent metabolite FM-6-1. The residue definition for monitoring is therefore the sum of triflumizole and FM-6-1 expressed as triflumizole. For risk assessment it was concluded that a worst case conversion factor of 1.5 could be derived from the metabolism data and this then includes all identified metabolites containing the 4-chloro-2-(trifluoromethyl)phenyl moiety. It was accepted that this conversion factor could be used for tomato and cucumber.

Succeeding and rotational crops are not an issue as the crops are only to be grown on artificial substrate. Also it is not necessary to investigate the nature and magnitude of residues in livestock as the crops in question are not fed to animals. Sufficient residue trials on protected cucumber (extrapolate to cucurbits edible peel) and protected tomato have been provided. From these residue data MRLs of 0.1 mg/kg for cucurbits edible peel and 1 mg/kg for tomatoes have been proposed. A residue storage stability study was conducted that showed that triflumizole is only stable for 1 month and not 4 months as stated in the Additional Report (recovery 74 % at 33 days but <70 % at 125 days). The consequence of this is not known as it is stated in the Additional Report that trial samples were stored frozen for up to 3 months. From the stability study it can be seen that circa 40 % of the triflumizole residue is lost after 4 months and this should be taken into account for the risk assessment. As a consequence a data gap was identified. In the same stability study, residues of FM-6-1 appeared to be stable. However, it is not clear if the same samples were spiked with both triflumizole and FM-6-1 or if they were separate samples. If they were the same samples then, if triflumizole is breaking down to FM-6-1, any degradation of FM-6-1 could be masked. The risk assessment using the EFSA PRIMo model rev.2 is a maximum of 9.8 % of the ADI and 58 % of the ARfD for tomato and 7.7 % of the ARfD for cucumber (using proposed MRLs). But as mentioned above, this must be considered along with the instability seen in the storage study. Even taking this into account, it is highly unlikely that the reference doses will be exceeded for these crops.

4. Environmental fate and behaviour

The peer review concluded that acceptable data on the route and rate of degradation of triflumizole in soil were not available. The applicant's dossier did not include an assessment of the mobility of triflumizole in soil, though the water solubility of around 10 mg/L indicates that it might be expected to exhibit some mobility. As the applied for intended use is only for plants growing on artificial substrate, these data are not necessary to complete an environmental exposure assessment, which consequently has been based on the assumption that soil exposure will be negligible. If soil exposure is negligible, than the potential for groundwater exposure would also be expected to be negligible.

In laboratory incubations of triflumizole in aerobic natural sediment water systems triflumizole exhibited moderate to high persistence breaking down to the major metabolites (>10% applied radioactivity (AR)) FA-1-1 (persistence estimate not available) and imidazole (which exhibited moderate persistence). Triflumizole partitioned from the water to the sediment phase. The metabolites were relatively evenly distributed between the water and sediment phases of the test sediment water systems. Mineralisation of the phenyl and imidazole ring radiolabels accounted for less than 0.3 % AR and 20-39 % AR respectively after 95-101 days (study end). Residues not extracted from sediment by methanol including a Soxhlet extraction were also a sink for radioactivity representing 5.8-19 % AR at study end. The necessary surface water exposure assessments (for triflumizole, FA-1-1 and imidazole) were appropriately carried out using a FOCUS (2001) step 2 approach (version 1.1) that was then modified by post processing the spray drift input results (option no runoff or drainage was selected) to obtain a 0.1 % emission of triflumizole from glasshouses being re-deposited on adjacent surface water bodies. This approach has been accepted by Member State experts, as an assumption that can be used in EU level surface water exposure assessments for glasshouse uses. The PEC resulting from these calculations can be found in Appendix A. Note that risk to sediment dwellers was addressed by using a PECsw calculation that assumed no partitioning to sediment, consequently maximising the surface

water concentration calculated and (artificially) excluding dissipation by partitioning to sediment in this predicted concentration. This approach was combined with an ecotoxicology test where a water no effect concentration from a water spiked study design was selected for the risk assessment. This was considered acceptable in this case.

5. Ecotoxicology

The environmental risk assessment of triflumizole was conducted according to the guidance documents (see References). Toxicity studies with triflumizole indicated a low acute toxicity of triflumizole to birds and mammals. An assessment of the risk from exposure to contaminated surface water and an assessment of the risk for fish-eating birds and mammals were performed as drift from the glasshouse uses was expected. The risk from the intended uses was assessed as low.

Based on the available data, triflumizole and the formulation were considered to be very toxic to aquatic organisms. The metabolite FA-1-1 was found to be of less toxicity than the parent substance. The triflumizole toxicity to *Pimephales promelas* was driving the risk assessment and a low risk was found for the aquatic organisms. The risk for the metabolite imidazole was assessed as low. The bioconcentration factor was 1417. Triflumizole belongs to the azoles family, and due to the mode of action, the potential for endocrine disruption in fish was assessed. The potential for endocrine disruption was assessed based on the use of the most sensitive end point from an early-life stage test with an additional uncertainty safety factor of 5 (35 days NOEC = 44 μ g a.s/L / 5 = 8.8 μ g a.s./L).

HQ calculations based on acute oral and contact toxicity of triflumizole indicated a low risk to bees. Since triflumizole is applied to artificial substrate in the greenhouse, exposure to non-target arthropods is unlikely to occur. However, the intended uses of triflumizole could involve the use of integrated pest management (IPM) programmes. Laboratory studies on non-target arthropods were provided with the two standard species *Typhlodromus pyri* and *Aphidius rhopalosiphi*. Additional tier I and aged residues studies with the parasitic wasp *Encarsia formosa* and the predatory mite *Phytoseiulus persimilis* were provided. Based on the available data it could be concluded that triflumizole should only be used in IPM programmes if a waiting period of a minimum of 3 days after the last application is introduced.

Since the intended uses of triflumizole involve only indoor treatment, the risk of triflumizole to soil non-target organisms (earthworms, other non-target macro-organisms and soil micro-organisms) and non-target plants are considered not relevant.

No significant adverse effects on sewage treatment were expected.

6. Overview of the risk assessment of compounds listed in residue definitions for the environmental compartments

6.1. Soil

Compound (name and/or code)	Persistence	Ecotoxicology
None due to the intended use	-	-

6.2. Ground water

Compound (name and/or code)	Mobility in soil	>0.1 µg/L 1m depth for the representative uses (at least one FOCUS scenario or relevant lysimeter)	Pesticidal activity	Toxicological relevance	Ecotoxicological activity
None due to the intended use	-	-	-	-	-

6.3. Surface water and sediment

Compound (name and/or code)	Ecotoxicology
triflumizole	Triflumizole is very toxic to aquatic organisms. The risk to aquatic organisms from triflumizole was assessed as low.
FA-1-1	The metabolite FA-1-1 is toxic to aquatic organisms. The risk to aquatic organisms from FA-1-1 was assessed as low.

imidazole	The metabolite imidazole exhibits comparable toxicity to metabolite FA-1-1 in chironomus testing. The risk to aquatic organisms from imidazole was assessed as low.

6.4. Air

Compound (name and/or code)	Toxicology
triflumizole	Not acutely toxic by inhalation.

LIST OF STUDIES TO BE GENERATED, STILL ONGOING OR AVAILABLE BUT NOT PEER REVIEWED

• The stability in freezer storage showed that the residue is only stable for 1 month. As this is the case and given the fact that the residue trials are stored for up to 3 months, brings into question at least some of the trials. This issue needs to be addressed. This might need to be addressed by additional trials after which the risk assessment and MRLs should be reconsidered (relevant for all representative uses evaluated, data gap identified by EFSA, date of submission unknown; refer to section 3).

Particular conditions proposed to be taken into account to manage the $\ensuremath{\mathsf{Risk}}(s)$ identified

• The use of PPE (gloves and coverall) is needed for the operator to reach an exposure level below the AOEL.

ISSUES THAT COULD NOT BE FINALISED

• The consumer risk assessment can not be finalised because of the issue of instability of the residue.

CRITICAL AREAS OF CONCERN

• None

REFERENCES

EFSA (European Food Safety Authority), 2009. Peer Review Report to the conclusion regarding the peer review of the pesticide risk assessment of the active substance triflumizole. EFSA Journal 2009: 7(12): 1415.

European Commission, 2002. Guidance Document on Terrestrial Ecotoxicology under Council Directive 91/414/EEC. SANCO/10329/2002.

European Commission, 2002. Guidance Document on Risk Assessment for Birds and Mammals under Council Directive 91/414/EEC. SANCO/4145/2000, September 2002

European Commission, 2002. Guidance Document on Aquatic Ecotoxicology in the context of the Directive 91/414/EEC. SANCO/3268/2001 rev.4 final, October 2002

European Commission, 2008. Review Report for the active substance triflumizole finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 20 May 2008 in support of a decision concerning the non-inclusion of triflumizole. in Annex I of Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance. SANCO/1061/08 – rev.0, 25 April 2008.

FOCUS (2001). "FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC". Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.2. 245 pp.

SETAC, 2001. Guidance Document on Regulatory Testing and Risk Assessment for Plant Protection Products with Non-Target Arthropods. ESCORT 2, March 2000.

The Netherlands, 2006. Draft Assessment Report (DAR) on the active substance triflumizole. prepared by the rapporteur Member State The Netherlands in the framework of Directive 91/414/EEC, January 2006.

The Netherlands, 2009a. Additional Report to the Draft Assessment Report on the active substance triflumizole prepared by the rapporteur Member State The Netherlands in the framework of Commission Regulation (EC) No 33/2008, March 2009.

The Netherlands, 2009b. Final Addendum to the Additional Report on triflumizole, compiled by EFSA, October 2009.

APPENDICES

APPENDIX A - LIST OF END POINTS FOR THE ACTIVE SUBSTANCE AND THE REPRESENTATIVE FORMULATION

Г

Identity, Physical and Chemical Properties, Details of Uses, Further Information

Active substance (ISO Common Name) ‡	Triflumizole
Function (e.g. fungicide)	Fungicide
Rapporteur Member State	The Netherlands
Co-rapporteur Member State	-
Identity (Annex IIA, point 1)	
Chemical name (IUPAC) ‡	(<i>E</i>)-4-chloro- α , α , α -trifluoro- <i>N</i> -(1-imidazol-1-yl-2-
	propoxyethylidene)-o-toluidine
Chemical name (CA) ‡	1-[(1 <i>E</i>)-1-[[4-chloro-2-
	(trifluoromethyl)phenyl]imino]-2-propoxyethyl]-
	1 <i>H</i> -imidazole
CIPAC No ‡	730
CAS No ‡	99387-89-0
EC No (EINECS or ELINCS) ‡	not available
FAO Specification (including year of publication) ‡	not available
Minimum purity of the active substance as manufactured ‡	980 g/kg
Identity of relevant impurities (of	Toluene
toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	Max. 1 g/kg
Molecular formula ‡	C ₁₅ H ₁₅ ClF ₃ N ₃ O
Molecular mass ‡	345.75 g/mol
Structural formula ‡	
	N N

٦

Boiling point (state purity) \ddagger not applicable, decomposition before boilingTemperature of decomposition (state purity)Exothermic decomposition above 150 °C (99.9%)Appearance (state purity) \ddagger Exothermic decomposition above 150 °C (99.9%)Vapour pressure (state temperature, state purity) \ddagger $1.91 x 10^4$ Pa at 25 °C (99%)Henry's law constant \ddagger $6.29 x 10^3$ Pa.m ³ .mol ⁻¹ (25 °C)Solubility in water (state temperature, state purity) and pH) \ddagger in water and buffer solutions (pH 7 and pH 8): 10.5, 10.2 and 9.6 mg/L, respectively (20 °C) in water at 30 °C: 10.2 mg/L (99.9%)Solubility in organic solvents \ddagger noctanol605g/L at 25 °C dichloromethaneSolubility in organic solvents \ddagger noctanol610605g/L at 25 °C acetonirile1187g/L at 25 °C dichloromethane3016g/L at 25 °C acetoneacetone1440 g/L at 20 °C acetonewith a concentration and temperature, state purity)Partition co-efficient \ddagger (state temperature, pH and purity)Partition co-efficient \ddagger (state purity) \ddagger Dissociation constant (state purity) \ddagger Dissociation	Melting point (state purity) ‡	63 °C (99.3%)						
Appearance (state purity) \ddagger white granulate material with a scentless odour (99.9%)Vapour pressure (state temperature, state purity) \ddagger 1.91x10 ⁻⁴ Pa at 25 °C (99%)Henry's law constant \ddagger 6.29 x 10 ⁻³ Pa.m ³ .mol ⁻¹ (25 °C)Solubility in water (state temperature, state purity and pH) \ddagger 1.91x10 ⁻⁴ Pa at 25 °C (99%)Solubility in organic solvents \ddagger 6.29 x 10 ⁻³ Pa.m ³ .mol ⁻¹ (25 °C)in water at 30 °C: 10.2 mg/L. (99.9%)(99.9%)in buffer (pH 4): 21 mg/L (20°C) (99.7%)Solubility in organic solvents \ddagger (state temperature, state purity)Noncentrative, state purity)Surface tension \ddagger (state concentration and temperature, state purity)Surface tension \ddagger (state concentration and temperature, state purity)Partition co-efficient \ddagger (state temperature, pH and purity)Partition co-efficient \ddagger (state temperature, pH and purity)Partition constant (state purity) \ddagger Dissociation constant (state purity) \ddagger Dissociation constant (state purity) \ddagger Dissociation constant (state purity) \ddagger Partition constant (state purity) \ddagger Dissociation constant (state purity) \ddagger <td>Boiling point (state purity) ‡</td> <td>not applicable, decomp</td> <td>osition</td> <td>before boiling</td>	Boiling point (state purity) ‡	not applicable, decomp	osition	before boiling				
Preprimitive (oute parity) \ddagger (99.9%)Vapour pressure (state temperature, state purity) \ddagger 1.91x10 ⁻⁴ Pa at 25 °C (99%)Henry's law constant \ddagger 6.29 x 10 ⁻³ Pa.m ³ .mol ⁻¹ (25 °C)Solubility in water (state temperature, state purity and pH) \ddagger in water and buffer solutions (pH 7 and pH 8): 10.5, 10.2 and 9.6 mg/L, respectively (20 °C) in water at 30 °C: 10.2 mg/L (99.9%) in buffer (pH 4): 21 mg/L (20°C) (99.7%)Solubility in organic solvents \ddagger (state temperature, state purity)n-octanol605 eff g/L at 25 °C acetonitrilen-octanol605 eff at 25 °C acetonitrile1187 eff at 25 °C acetonitrile21 at 25 °C eff at 25 °C acetonitrileSolubility in organic solvents \ddagger (state temperature, state purity)n-octanol605 eff at 22 °C eff at 22 °C aceton 17.6 g/L at 20 °C g/L at 20 °C acetone1440 eff at 20 °C acetoneSurface tension \ddagger (state concentration and temperature, state purity)90% saturated solution at 20 °C (99.2%)Partition co-efficient \ddagger (state temperature, pH and purity)Calculated from the measured solubilities: LogP _{ow} pH 4 = 4.46 LogP _{ow} pH 8 = 4.80Dissociation constant (state purity) \ddagger PKa = 3.7 at 25 °C (98.6%)maxima at (in methanol, purity 99.9%): 201.5 nm ($\epsilon = 2.64x10^4$ L.mol ⁻¹ .cm ⁻¹) 236.0 nm ($\epsilon = 2.64x10^4$ L.mol ⁻¹ .cm ⁻¹) and	Temperature of decomposition (state purity)	Exothermic decomposition	ition abo	ove 150 °C (99.9%)				
Vapour pressure (state temperature, state purity) ‡1.91x10 ⁴ Pa at 25 °C (99%)Henry's law constant ‡ $6.29 \times 10^{-3} Pa.m^3.mol^{-1} (25 °C)$ Solubility in water (state temperature, state purity and pH) ‡in water and buffer solutions (pH 7 and pH 8): 10.5, 10.2 and 9.6 mg/L, respectively (20 °C) in water at 30 °C: 10.2 mg/L (99.9%) in buffer (pH 4): 21 mg/L (20°C) (99.7%)Solubility in organic solvents ‡ (state temperature, state purity)n-octanol605g/L at 25 °C acetonitrileSolubility in organic solvents ‡ (state temperature, state purity)n-octanol605g/L at 25 °C acetonitrileSolubility in organic solvents ‡ (state temperature, state purity)n-octanol605g/L at 25 °C acetonitrileSolubility in organic solvents ‡ (state temperature, state purity)n-octanol605g/L at 25 °C acetonitrileSolubility in organic solvents ‡ (state concentration and temperature, state purity)n-octanol605g/L at 25 °C acetoneSurface tension ‡ (state concentration and temperature, state purity)g/L at 20 °C acetone1440g/L at 20 °C acetoneSurface tension ‡ (state temperature, pH and purity)Calculated from the measured solution at 20 °C (99.2%)20°C: 98.6% pure; 25°C 98.7% pureValue pow pH 4 = 4.46 LogP _{ow} pH 4 = 4.46 LogP _{ow} pH 7 = 4.77 LogP _{ow} pH 7 = 4.77 LogP _{ow} pH 8 = 4.80105Dissociation constant (state purity) ‡pKa = 3.7 at 25 °C (98.6%)maxima at (in methanol, purity 99.9%): 201.5 nm (ϵ = 2.53x10 ⁴ L.mol ⁻¹ .cm ⁻¹) 236.0 nm (ϵ = 2.64x10 ⁴ L.mol ⁻¹ .cm ⁻¹) and <td>Appearance (state purity) ‡</td> <td>white granulate materia</td> <td>al with a</td> <td>scentless odour</td>	Appearance (state purity) ‡	white granulate materia	al with a	scentless odour				
Interpretation of the present of the print of the prin		(99.9%)						
Number of the observation of the product of the p		1.91x10 ⁻⁴ Pa at 25 °C (99%)					
Souriary in P(1) \ddagger Interformative statepurity and pH) \ddagger 10.2 and 9.6 mg/L, respectively (20 °C)in water at 30 °C: 10.2 mg/L(99.9%)in buffer (pH 4): 21 mg/L (20°C) (99.7%)n-octanol605 g/L at 25 °Cacetonitrile1187 g/L at 25 °Cacetonitrile1187 g/L at 25 °Cacetonitrile1187 g/L at 25 °Cdichloromethane3016 g/L at 25 °Cn-bexane17.6 g/L at 20 °Cn-hexane17.6 g/L at 20 °Cmethanol496 g/L at 20 °Cacetone1440 g/L at 20 °Cacetone1440 g/L at 20 °Cacetone1440 g/L at 20 °C20°C: 98.6% pure; 25°C 98.7% pureSurface tension \ddagger (state concentration and temperature, statepurity)Partition co-efficient \ddagger (state temperature, pH and purity)Dissociation constant (state purity) \ddagger Dissociation constant (state purity) \ddagger V/VIS absorption (max.) incl. $\varepsilon \ddagger$ (state purity, pH) 20.5 nm ($\varepsilon = 2.53 \times 10^4 \text{ L.mol}^{-1} \text{ cm}^{-1}$) 23.6 nm ($\varepsilon = 2.64 \times 10^4 \text{ L.mol}^{-1} \text{ cm}^{-1}$) and	Henry's law constant ‡	6.29 x 10 ⁻³ Pa.m ³ .mol ⁻¹ (25 °C)						
Note in the form the measured solution at 20 °CSolubility in organic solvents \ddagger Solubility in organic solvents \ddagger (state temperature, state purity)n-octanol605g/L at 25 °Cacetonitrile1187g/L at 25 °Cacetonitrile1187g/L at 25 °Cacetonitrile1187g/L at 25 °Cdichloromethane3016g/L at 25 °Cdichloromethane3016g/L at 20 °Cmethanol496g/L at 20 °Cacetone1440g/L at 20 °C20°C: 98.6% pure; 25°C 98.7% pure49.4 mN/m for a 90% saturated solution at 20 °C(99.2%)Partition co-efficient \ddagger (state temperature, pH and purity)Calculated from the measured solubilities:LogPow pH 4 = 4.46LogPow pH 7 = 4.77LogPow pH 8 = 4.80Dissociation constant (state purity) \ddagger pKa = 3.7 at 25 °C (98.6%)uV/VIS absorption (max.) incl. $\epsilon \ddagger$ 20.5 nm ($\epsilon = 2.64x10^4$ L.mol ⁻¹ .cm ⁻¹)2	Solubility in water (state temperature, state	in water and buffer sol	utions (p	oH 7 and pH 8): 10.5,				
Solubility in organic solvents \ddagger (state temperature, state purity)in buffer (pH 4): 21 mg/L (20°C) (99.7%)N-octanol 605 g/L at $25 ^{\circ}\text{C}$ acetonitrile 1187 g/L at $25 ^{\circ}\text{C}$ ethyl acetate1486 g/L at $25 ^{\circ}\text{C}$ ichloromethane 3016 g/L at $25 ^{\circ}\text{C}$ dichloromethane 3016 g/L at $20 ^{\circ}\text{C}$ ichloromethane 3016 g/L at $20 ^{\circ}\text{C}$ n-bexane 17.6 g/L at $20 ^{\circ}\text{C}$ ichloroform 2220 g/L at $20 ^{\circ}\text{C}$ acetone 1440 g/L at $20 ^{\circ}\text{C}$ ichloroform 2220 g/L at $20 ^{\circ}\text{C}$ surface tension \ddagger (99.2%) 92% mV/m for a 90% saturated solution at $20 ^{\circ}\text{C}$ $20^{\circ}\text{C}: 98.6\%$ pure; $25^{\circ}\text{C}: 98.7\%$ pureSurface tension \ddagger (9.2%) 9.4% mN/m for a 90% saturated solution at $20 ^{\circ}\text{C}$ (state concentration and temperature, state 109% mJH 4 = 4.46 1029°ow pH 7 = 4.77 1029°ow pH 4 = 4.80Dissociation constant (state purity) \ddagger $pKa = 3.7$ at $25 ^{\circ}\text{C} (98.6\%)$ UV/VIS absorption (max.) incl. $\varepsilon \ddagger$ maxima at (in methanol, purity 99.9%): 201.5 nm ($\varepsilon = 2.53x10^4 \text{ L.mol}^{-1}$.cm ⁻¹) 236.0 nm ($\varepsilon = 2.64x10^4 \text{ L.mol}^{-1}$.cm ⁻¹) and	purity and pH) ‡	10.2 and 9.6 mg/L, res	pectively	y (20 °C)				
Solubility in organic solvents \ddagger (state temperature, state purity)in buffer (pH 4): 21 mg/L (20°C) (99.7%)N-octanol605g/L at 25 °C acetonitrile1187g/L at 25 °C acetonitrileacetonitrile1187g/L at 25 °C dichloromethane3016g/L at 25 °C oC methanol496g/L at 20 °C vN-hexane17.6g/L at 20 °C choromethane3016g/L at 20 °C cc acetone1440g/L at 20 °C cc por C acetone220 °C cc acetone220 °C cc por C acetone220 °C cc por C state 20 °CSurface tension \ddagger (state concentration and temperature, state purity)94.4 mN/m for a 90% saturated solution at 20 °C (99.2%)20°C cc (99.2%)Surface tension \ddagger (state temperature, pH and purity)Calculated from the measured solubilities: LogP _{ow} pH 4 = 4.46 LogP _{ow} pH 7 = 4.77 LogP _{ow} pH 8 = 4.80Dissociation constant (state purity) \ddagger (State purity, pH)pKa = 3.7 at 25 °C (98.6%) maxima at (in methanol, purity 99.9%): 201.5 nm (ε = 2.53x10 ⁴ L.mol ⁻¹ .cm ⁻¹) 236.0 nm (ε = 2.64x10 ⁴ L.mol ⁻¹ .cm ⁻¹) and		in water at 30 °C: 10.2	mg/L					
Solubility in organic solvents \ddagger Noctanol605g/L at 25 °C(state temperature, state purity)n-octanol605g/L at 25 °Cacetonitrile1187g/L at 25 °Cethyl acetate1486g/L at 25 °Cdichloromethane3016g/L at 20 °Cmethanol496g/L at 20 °Cacetone1440g/L at 20 °Ccoloroform2220g/L at 20 °C20°C: 98.6% pure; 25°C 98.7% pure20°C49.4 mN/m for a 90% saturated solution at 20 °C(99.2%)Partition co-efficient \ddagger Calculated from the measured solubilities:LogP _{ow} pH 4 = 4.46LogP _{ow} pH 7 = 4.77LogP _{ow} pH 8 = 4.80Dissociation constant (state purity) \ddagger pKa = 3.7 at 25 °C (98.6%)UV/VIS absorption (max.) incl. $\varepsilon \ddagger$ maxima at (in methanol, purity 99.9%):201.5 nm ($\varepsilon = 2.63x10^4$ L.mol ⁻¹ .cm ⁻¹)236.0 nm ($\varepsilon = 2.64x10^4$ L.mol ⁻¹ .cm ⁻¹) and		(99.9%)						
$\begin{array}{llllllllllllllllllllllllllllllllllll$		in buffer (pH 4): 21 mg	g/L (20°	°C) (99.7%)				
$\begin{aligned} & \text{etcomme} & \text{if } \text{if } \text{if } \text{g}(\text{E} \text{ at } 25 \text{ c}) \\ & \text{ethyl acetate} & 1486 \text{ g/L at } 25 \text{ c} \\ & \text{ethyl acetate} & 1486 \text{ g/L at } 25 \text{ c} \\ & \text{dichloromethane} & 3016 \text{ g/L at } 25 \text{ c} \\ & \text{n-hexane} & 17.6 \text{ g/L at } 20 \text{ c} \\ & \text{methanol} & 496 \text{ g/L at } 20 \text{ c} \\ & \text{methanol} & 496 \text{ g/L at } 20 \text{ c} \\ & \text{acetone} & 1440 \text{ g/L at } 20 \text{ c} \\ & \text{acetone} & 1440 \text{ g/L at } 20 \text{ c} \\ & \text{acetone} & 1440 \text{ g/L at } 20 \text{ c} \\ & \text{acetone} & 1440 \text{ g/L at } 20 \text{ c} \\ & \text{chloroform} & 2220 \text{ g/L at } 20 \text{ c} \\ & 20^{\circ}\text{C} \text{ : 98.6\% pure; } 25^{\circ}\text{C} \text{ 98.7\% pure} \\ & 49.4 \text{ mN/m for a } 90\% \text{ saturated solution at } 20 \text{ c} \\ & (\text{state concentration and temperature, state} \\ & \text{purity} \end{aligned}$ $Partition co-efficient \ddagger \\ & (\text{state temperature, pH and purity}) \end{aligned}$ $Calculated from the measured solubilities: \\ & \text{LogP}_{ow} \text{ pH } 4 = 4.46 \\ & \text{LogP}_{ow} \text{ pH } 4 = 4.46 \\ & \text{LogP}_{ow} \text{ pH } 3 = 4.80 \\ \\ & \text{Dissociation constant (state purity) \ddagger} \end{aligned}$ $PKa = 3.7 \text{ at } 25 \text{ c} (98.6\%)$ $\text{maxima at (in methanol, purity 99.9\%):} \\ & 201.5 \text{ nm} (\epsilon = 2.53 \times 10^4 \text{ L.mol}^{-1} \text{ cm}^{-1}) \\ & 236.0 \text{ nm} (\epsilon = 2.64 \times 10^4 \text{ L.mol}^{-1} \text{ cm}^{-1}) \text{ and} \end{aligned}$	Solubility in organic solvents ‡	n-octanol	605	g/L at 25 °C				
dichloromethane 3016 g/L at $25 \ ^{\circ}C$ n-hexane 17.6 g/L at $20 \ ^{\circ}C$ methanol 496 g/L at $20 \ ^{\circ}C$ xylene 639 g/L at $20 \ ^{\circ}C$ acetone 1440 g/L at $20 \ ^{\circ}C$ chloroform 2220 g/L at $20 \ ^{\circ}C$ chloroform 2220 g/L at $20 \ ^{\circ}C$ 20°C: 98.6% pure; $25^{\circ}C \ 98.7\%$ pure49.4 mN/m for a 90% saturated solution at $20 \ ^{\circ}C$ (state concentration and temperature, state purity)Partition co-efficient \ddagger Calculated from the measured solubilities: (state temperature, pH and purity)Calculated from the measured solubilities: LogP _{ow} pH 4 = 4.46 LogP _{ow} pH 7 = 4.77 LogP _{ow} pH 8 = 4.80Dissociation constant (state purity) \ddagger $pKa = 3.7 \ at 25 \ ^{\circ}C \ (98.6\%)$ UV/VIS absorption (max.) incl. $\epsilon \ddagger$ maxima at (in methanol, purity 99.9\%): $201.5 \ nm (\epsilon = 2.53 \times 10^4 \ L.mol^{-1}.cm^{-1})$ $236.0 \ nm (\epsilon = 2.64 \times 10^4 \ L.mol^{-1}.cm^{-1}) \ and$	(state temperature, state purity)	acetonitrile	1187	g/L at 25 °C				
$\begin{array}{c} n-hexane & 17.6 g/L \ at 20 \ ^{\circ}C \\ methanol & 496 g/L \ at 20 \ ^{\circ}C \\ xylene & 639 g/L \ at 20 \ ^{\circ}C \\ acetone & 1440 g/L \ at 20 \ ^{\circ}C \\ chloroform & 2220 g/L \ at 20 \ ^{\circ}C \\ 20^{\circ}C : 98.6\% \ pure; 25^{\circ}C \ 98.7\% \ pure \\ \hline \\ 20^{\circ}C : 98.6\% \ pure; 25^{\circ}C \ 98.7\% \ pure \\ \hline \\ 49.4 \ mN/m \ for \ a \ 90\% \ saturated \ solution \ at 20 \ ^{\circ}C \\ (99.2\%) \\ \hline \\ Partition \ co-efficient $$; (state temperature, state purity) \\ Partition \ co-efficient $$; (state temperature, pH \ and purity) \\ \hline \\ Calculated \ from \ the \ measured \ solution \ at 20 \ ^{\circ}C \\ (99.2\%) \\ \hline \\ Calculated \ from \ the \ measured \ solutiolities: \\ LogP_{ow} \ pH \ 4 = 4.46 \\ LogP_{ow} \ pH \ 4 = 4.46 \\ LogP_{ow} \ pH \ 8 = 4.80 \\ \hline \\ Dissociation \ constant \ (state \ purity) $$; \\ UV/VIS \ absorption \ (max.) \ incl. \ \varepsilon $$; \\ (state \ purity, pH) \\ \hline \\ \hline \\ Dissociation \ (max.) \ incl. \ \varepsilon $$; \\ (state \ purity, pH) \\ \hline \\ \hline \\ \end{array}$		ethyl acetate	1486	g/L at 25 °C				
$\begin{array}{lll} \mbox{methanol} & 496 & g/L \mbox{ at } 20\ ^{\circ}\mbox{C} \\ \mbox{xylene} & 639 & g/L \mbox{ at } 20\ ^{\circ}\mbox{C} \\ \mbox{acetone} & 1440 & g/L \mbox{ at } 20\ ^{\circ}\mbox{C} \\ \mbox{acetone} & 1440 & g/L \mbox{ at } 20\ ^{\circ}\mbox{C} \\ \mbox{20\ }^{\circ}\mbox{C} & 98.6\% \mbox{ pure; } 25^{\circ}\mbox{C} \mbox{98.7\% \ pure} \\ \hline & 49.4\ mN/m \mbox{ for a } 90\% \mbox{ saturated solution at } 20\ ^{\circ}\mbox{C} \\ \mbox{(state concentration and temperature, state purity)} \\ \mbox{Partition co-efficient $$; (state temperature, pH and purity)} \\ \hline & Calculated \mbox{ from the measured solubilities:} \\ \mbox{(state temperature, pH and purity)} \\ \hline & Dissociation \mbox{ constant (state purity) $$; $ \\ \mbox{UV/VIS absorption (max.) incl. $${ϵ $$; $$ } \\ \mbox{(state purity, pH)} \\ \hline & Dissociation \mbox{ constant (state purity) $$; $ \\ \mbox{(state purity, pH)} \\ \hline & Dissociation \mbox{ (in methanol, purity 99.9\%):} \\ (20\ $$20\ $$10\ $$$		dichloromethane	3016	g/L at 25 °C				
xylene 639 g/L at 20 °Cacetone1440g/L at 20 °Cchloroform2220g/L at 20 °C20°C: 98.6% pure; 25°C 98.7% pure20°C: 98.6% pure; 25°C 98.7% pureSurface tension ‡ (state concentration and temperature, state purity)49.4 mN/m for a 90% saturated solution at 20 °CPartition co-efficient ‡ (state temperature, pH and purity)Calculated from the measured solubilities: LogP _{ow} pH 4 = 4.46 LogP _{ow} pH 7 = 4.77 LogP _{ow} pH 8 = 4.80Dissociation constant (state purity) ‡pKa = 3.7 at 25 °C (98.6%)UV/VIS absorption (max.) incl. ε ‡ (state purity, pH)maxima at (in methanol, purity 99.9%): 201.5 nm (ε = 2.53x10 ⁴ L.mol ⁻¹ .cm ⁻¹) and		n-hexane	17.6	g/L at 20 °C				
Image: constant (state purity) \$Image: constant (state purity) \$Dissociation constant (state purity) \$ $pKa = 3.7 at 25 °C (98.6\%)$ Dissociation constant (state purity) \$ $pKa = 2.53 x 10^4 L.mol^{-1}.cm^{-1}$ 20°C: 98.6% pure; 25°C 98.7% pure49.4 mN/m for a 90% saturated solution at 20 °C (99.2%)Partition co-efficient \$(state temperature, pH and purity)Calculated from the measured solubilities:LogPow pH 4 = 4.46LogPow pH 7 = 4.77LogPow pH 8 = 4.80Dissociation constant (state purity) \$(state purity, pH)236.0 nm ($\varepsilon = 2.64x 10^4 L.mol^{-1}.cm^{-1}$) and		methanol	496	g/L at 20 °C				
Surface tension ‡ (state concentration and temperature, state purity)Calculated from the measured solution at 20 °C (99.2%)Partition co-efficient ‡ (state temperature, pH and purity)Calculated from the measured solubilities: LogPow pH 4 = 4.46 LogPow pH 7 = 4.77 LogPow pH 8 = 4.80Dissociation constant (state purity) ‡ (V/VIS absorption (max.) incl. ε ‡ (state purity, pH)PKa = 3.7 at 25 °C (98.6%) maxima at (in methanol, purity 99.9%): 201.5 nm (ε = 2.64x10 ⁴ L.mol ⁻¹ .cm ⁻¹) and		xylene	639	g/L at 20 °C				
Surface tension \ddagger $20^{\circ}C: 98.6\%$ pure; $25^{\circ}C 98.7\%$ pureSurface tension \ddagger 49.4 mN/m for a 90% saturated solution at 20 °C(state concentration and temperature, state purity) 49.4 mN/m for a 90% saturated solution at 20 °CPartition co-efficient \ddagger (99.2%)Calculated from the measured solubilities: LogP _{ow} pH 4 = 4.46 LogP _{ow} pH 7 = 4.77 LogP _{ow} pH 8 = 4.80Dissociation constant (state purity) \ddagger pKa = 3.7 at 25 °C (98.6%)UV/VIS absorption (max.) incl. $\varepsilon \ddagger$ (state purity, pH)maxima at (in methanol, purity 99.9%): 201.5 nm (ε = 2.53x10 ⁴ L.mol ⁻¹ .cm ⁻¹) and		acetone	1440	g/L at 20 °C				
Surface tension \ddagger (state concentration and temperature, state purity)49.4 mN/m for a 90% saturated solution at 20 °C (99.2%)Partition co-efficient \ddagger (state temperature, pH and purity)Calculated from the measured solubilities: LogP _{ow} pH 4 = 4.46 LogP _{ow} pH 7 = 4.77 LogP _{ow} pH 8 = 4.80Dissociation constant (state purity) \ddagger pKa = 3.7 at 25 °C (98.6%)UV/VIS absorption (max.) incl. $\epsilon \ddagger$ (state purity, pH)maxima at (in methanol, purity 99.9%): 201.5 nm ($\epsilon = 2.53 \times 10^4$ L.mol ⁻¹ .cm ⁻¹) and		chloroform	2220	g/L at 20 °C				
Surface constant \ddagger (state concentration and temperature, state purity)(99.2%)Partition co-efficient \ddagger Calculated from the measured solubilities: LogP _{ow} pH 4 = 4.46 LogP _{ow} pH 7 = 4.77 LogP _{ow} pH 8 = 4.80Dissociation constant (state purity) \ddagger pKa = 3.7 at 25 °C (98.6%)UV/VIS absorption (max.) incl. $\varepsilon \ddagger$ (state purity, pH)maxima at (in methanol, purity 99.9%): 201.5 nm (ε = 2.53x10 ⁴ L.mol ⁻¹ .cm ⁻¹) 236.0 nm (ε = 2.64x10 ⁴ L.mol ⁻¹ .cm ⁻¹) and		20°C: 98.6% pure; 25°	C 98.7%	o pure				
purity)Calculated from the measured solubilities:Partition co-efficient \ddagger Calculated from the measured solubilities:(state temperature, pH and purity)LogP _{ow} pH 4 = 4.46LogP _{ow} pH 7 = 4.77LogP _{ow} pH 8 = 4.80Dissociation constant (state purity) \ddagger pKa = 3.7 at 25 °C (98.6%)UV/VIS absorption (max.) incl. $\varepsilon \ddagger$ maxima at (in methanol, purity 99.9%):(state purity, pH)201.5 nm (ε = 2.53x10 ⁴ L.mol ⁻¹ .cm ⁻¹)236.0 nm (ε = 2.64x10 ⁴ L.mol ⁻¹ .cm ⁻¹) and		49.4 mN/m for a 90%	saturated	l solution at 20 °C				
I unition co-criterint \ddagger (state temperature, pH and purity)LogP _{ow} pH 4 = 4.46LogP _{ow} pH 7 = 4.77LogP _{ow} pH 8 = 4.80Dissociation constant (state purity) \ddagger UV/VIS absorption (max.) incl. $\epsilon \ddagger$ (state purity, pH)201.5 nm ($\epsilon = 2.53 \times 10^4$ L.mol ⁻¹ .cm ⁻¹)236.0 nm ($\epsilon = 2.64 \times 10^4$ L.mol ⁻¹ .cm ⁻¹) and								
Dissociation constant (state purity) ‡Dissociation constant (state purity) ‡Dissociation constant (state purity) ‡ UV/VIS absorption (max.) incl. ε ‡maxima at (in methanol, purity 99.9%):(state purity, pH)201.5 nm (ε = 2.53x10 ⁴ L.mol ⁻¹ .cm ⁻¹)236.0 nm (ε = 2.64x10 ⁴ L.mol ⁻¹ .cm ⁻¹) and	•	Calculated from the measured solubilities:						
UV/VIS absorption (max.) incl. ε ‡maxima at (in methanol, purity 99.9%):(state purity, pH)201.5 nm (ε = 2.53x10 ⁴ L.mol ⁻¹ .cm ⁻¹)236.0 nm (ε = 2.64x10 ⁴ L.mol ⁻¹ .cm ⁻¹) and	(state temperature, pH and purity)	$LogP_{ow}$ pH 7 = 4.77						
(state purity, pH) $201.5 \text{ nm} (\varepsilon = 2.53 \times 10^4 \text{ L.mol}^{-1} \text{ cm}^{-1})$ $236.0 \text{ nm} (\varepsilon = 2.64 \times 10^4 \text{ L.mol}^{-1} \text{ cm}^{-1}) \text{ and}$	Dissociation constant (state purity) ‡	pKa = 3.7 at 25 °C (98	.6%)					
236.0 nm ($\varepsilon = 2.64 \times 10^4 \text{ L.mol}^{-1} \text{ cm}^{-1}$) and	UV/VIS absorption (max.) incl. ε ‡	maxima at (in methance	ol, purity	99.9%):				
	(state purity, pH)	201.5 nm ($\varepsilon = 2.53 \times 10^4 \text{ L.mol}^{-1}.\text{cm}^{-1}$)						
301 nm ($\varepsilon_{301} = 4.91 \times 10^3 \text{ L.mol}^{-1} \text{ cm}^{-1}$)		236.0 nm ($\epsilon = 2.64 \times 10^{-10}$	⁴ L.mol ⁻	$^{1}.cm^{-1}$) and				
		301 nm ($\varepsilon_{301} = 4.91 \times 10^{-10}$	3 L.mol ⁻	⁻¹ .cm ⁻¹)				

Physical and chemical properties (Annex IIA, point 2)

Flammability ‡ (state purity) Explosive properties ‡ (state purity) Oxidising properties ‡ (state purity) not highly flammable (99.2%)

not explosive (statement)

not oxidising (statement)

Summary of representative uses evaluated (triflumizole)*

Crop and/ or situation	Member State or Country	Product name	F G or I	Pests or Group of pests controlled	Formulation		tion Application			Applicat	ion rate per t	reatment	PHI (days)	Remarks:	
(a)			(b)	(c)	Type (d-f)	Conc. of as (i)	method kind (f-h)	growth stage & season (j)	number min max (k)	interval between applications (min)	kg as/hL min max	water L/ha min max	kg as/ha min max	(1)	(m)
Cucumber	NL, BE	ROCKET EC	Ι	Powdery mildew	EC	150 g/L	spray ing	*	1-6 ¹	7 days ¹	0.0156	500- 1500	0.078- 0.234	3	artificial substrates
Courgette	NL, BE	ROCKET EC	Ι	Powdery mildew	EC	150 g/L	spray ing	*	1-3	7 days	0.0156	500- 1500	0.078- 0.234	3	artificial substrates
Gherkin	BE	ROCKET EC	Ι	Powdery mildew	EC	150 g/L	spray ing	*	1-6 ¹	7 days ¹	0.0104	500- 1500	0.052- 0.156	3	artificial substrates
Tomato	NL, BE	ROCKET EC	Ι	Powdery mildew	EC	150 g/L	spray ing	*	1-5 ²	7 days ²	0.0156	500- 1500	0.078- 0.234	3	artificial substrates
Ornamen tals	NL, BE	ROCKET EC	Ι	Powdery mildew	EC	150 g/L	spray ing	all	1-6 ¹	7 days ¹	0.0156	500- 1500	0.078- 0.234	-	only grown on artificial substrates

* Treatment during harvesting period (adult plants), not before May 1st or 4 weeks after planting (juvenile plants) The GAR involves up to 6 applications in 2 apray programmes 1 apray programme is 3 applications with a set

The GAP involves up to 6 applications in 2 spray-programmes. 1 spray programme is 3 applications with a seven-day interval followed by a different fungicide. The minimum interval to the next spray-programme is 28 days.

² The GAP involves up to 5 applications in 2 spray-programmes. The first spray programme is 3 applications with a seven-day interval followed by at least two other different fungicides. The minimum interval to the second spray-programme of 2 applications is 49 days.

Remarks: * Uses for which risk assessment could not been concluded due to lack of essential data are marked grey

- (a) For crops, the EU and Codex classifications (both) should be used; where relevant, the use situation should be described (e.g. fumigation of a structure)
- (b) Outdoor or field use (F), glasshouse application (G) or indoor application (I)
- (c) e.g. biting and suckling insects, soil born insects, foliar fungi, weeds
- (d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
- (e) GCPF Codes GIFAP Technical Monograph No 2, 1989
- (f) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
- (g) All abbreviations used must be explained

- (h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plants type of equipment used must be indicated
- (i) g/kg or g/l
- Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
- (k) The minimum and maximum number of application possible under practical conditions of use must be provided
- (l) PHI minimum pre-harvest interval
- (m) Remarks may include: Extent of use/economic importance/restrictions

Methods of Analysis

Analytical methods for the active substance (Annex IIA, point 4.1)

Technical as (analytical technique)	HPLC-UV
Impurities in technical as (analytical technique)	HPLC-UV
Plant protection product (analytical technique)	HPLC-UV

Analytical methods for residues (Annex IIA, point 4.2)

Residue definitions for monitoring purposes

Food of plant origin	Sum of triflumizole and FM-6-1 expressed as triflumizole
Food of animal origin	none (by current intended use)
Soil	none (by current intended use) but triflumizole in case of accident / misuse
Water surface	triflumizole and FA-1-1. (Imidazole was excluded as it is a common residue that is not specific to triflumizole)
drinking/ground	none (by current intended use) but triflumizole in case of accident / misuse
Air	triflumizole

Monitoring/Enforcement methods

1 in
ŀ
ļ
rent
olite

Air (analytical technique and LOQ)	HPLC-MS/MS
	$LOQ = 0.0045 \text{ mg/m}^3 \text{ air } (0.0045 \mu\text{g/l} \text{ air}) \text{ for }$
	triflumizole
Body fluids and tissues (analytical technique and LOQ)	Not required [substance is not classified as toxic (T) or very toxic (T^+)]

Classification and proposed labelling with regard to physical and chemical data (Annex IIA, point 10)

Active substance

RMS/peer review proposal

None

(for transport: flammable liquid of class 3)

Impact on Human and Animal Health

Absorption, distribution, excretion and metabolism (toxicokinetics) (Annex IIA, point 5.1)

Rate and extent of oral absorption	At least 72%, based on radiolabel recovered from urine, tissues and carcass 48 h after single and repeated administration (10 mg/kg bw). Taking also the similar pattern of metabolites in urine and feaces into account it is assumed that oral absorption is >80%.
	in the first 24 h at least 66%
Distribution	Highest concentration in liver, well-perfused organs higher concentrations than other organs, brain among top-3 highest concentrations
Potential for accumulation	No evidence for accumulation
Rate and extent of excretion	Ca. 95% within 48 h, mainly via urine (ca. 75%)
	Ca. 90% within the first 24 h
Metabolism in animals	Extensively metabolised: < 2% parent compound in urine and faeces
	16 metabolites identified in urine and faeces (60-75% of radiolabel)
	Major metabolites in urine:
	Sulphate conjugates of n-(4-chloro-2-trifluoro- methylphenyl)-2-hydroxy-acetamidine and 2- amino-5-chloro-3-trifluoromethylphenol (each ca. 20% of urinary radiolabel)
Toxicologically relevant compounds (animals and plants)	Parent compound and metabolites containing the 4- chloro-2-(trifluoromethyl)phenyl group
Toxicologically relevant compounds (environment)	Parent compound

Acute toxicity (Annex IIA, point 5.2)

Rat LD ₅₀ oral	1057 mg/kg bw	R22
Rat LD ₅₀ dermal	>5000 mg/kg bw	
Rat LC ₅₀ inhalation	>3.6 mg/L (4 h, nose only)	
Skin irritation	Non-irritant	
Eye irritation	Non-irritant	
Skin sensitisation	Sensitizer (Maximisation test)	R43

Short term toxicity (Annex IIA, point 5.3)

Target / critical effect

Relevant oral NOAEL

Increased liver weight, liver histopathology	
13-w, neurotoxicity study rat: 70 ppm (4.1	

Peer Review of the pesticide risk assessment of the active substance triflumizole

Relevant dermal NOAEL

Relevant inhalation NOAEL

Genotoxicity (Annex IIA, point 5.4)

mg/kg bw/d)	
21 d rat: 100 mg/l/g hy/d	d)
21 - u, 1at. 100 mg/kg 0w/u	00 mg/kg bw/d
No data – not required	ot required

No genotoxic potential

Long term toxicity and carcinogenicity (Annex IIA, point 5.5)

Target/critical effect

Relevant NOAEL

Carcinogenicity

Increased liver weight, liver macroscopy and histopathology	
2-y, rat: 100 ppm (3.5 mg/kg bw/d)	
No carcinogenic potential	

Reproductive toxicity (Annex IIA, point 5.6)

Reproduction toxicity

Reproduction target / critical effect

Relevant parental NOAEL

Relevant reproductive NOAEL

Relevant offspring NOAEL

Developmental toxicity

Developmental target / critical effect

Relevant maternal NOAEL

Relevant developmental NOAEL

Neurotoxicity (Annex IIA, point 5.7)

Acute neurotoxicity

Repeated neurotoxicity

Delayed neurotoxicity

mating/fertility parameters, male reproductive organs at parental toxic doses	
70 ppm (4.8 mg/kg bw/d)	
70 ppm (4.8 mg/kg bw/d)	
70 ppm (4.8 mg/kg bw/d)	

reduced viability, body weight, increased resorptions, placental weight at maternal toxic doses. No teratogenic effects.	
Rat: 10 mg/kg bw/d	
Rabbit: 100 mg/kg bw/d	
Rat: 10 mg/kg bw/d	
Rabbit: 100 mg/kg bw/d	

No specific neurotoxic effects observed.	
NOAEL rat: 25 mg/kg bw	
No specific neurotoxic effects observed.	
13-w, rat: 70 ppm (4.1 mg/kg bw/d)	
No data-not required	

Mechanism studies	No data-not required		
Studies performed on metabolites or impurities	Acute oral toxicity studies with metabolites of		
	triflumizole:		
	<u>Metabolite</u>	LD ₅₀ (mg/kg/bw)	
	FD-1-1	3405	
	FD-2-1	>2000	
	FD-6-1	>2000	
	FD-7-1	1000; R22	
	FM-2-1	>2000	
	FM-5-1	>2000	
	FM-6-1	2131	
	FM-8-1	1935; R22	
	FA-1-1	771; R22	
	FA-1-5	>2000	

Other toxicological studies (Annex IIA, point 5.8)

Medical data (Annex IIA, point 5.9)

Summary (Annex IIA, point 5.10)

ADI

No effects in manufacturing,	no cases	of poisoning	
------------------------------	----------	--------------	--

Value	Study	Safety factor
0.05 mg/kg bw/d	rat, 2-generation toxicity study; supported by the 2-year and 13- week neurotox studies in rats and considering the dose spacing between these studies	100

AOEL (semi-chronic/chronic)	0.05 mg/kg bw/d	rat, 2-generation toxicity study; supported by the 2-year and 13- week neurotox studies in rats and considering the dose spacing between these studies	100
ARfD	0.1 mg/kg bw	rat, developmental study	100
Dermal absorption (Annex IIIA, point 7.3)			
Formulation (Rocket EC)	4% for the concent	trate (1.5 mg/cm^2)	
	11% for the dilution		
		and <i>in vivo</i> studies w lated as Rocket EC	ith
Exposure scenarios (Annex IIIA, point 7.2)			
Operator		use on roses, gherkin ber in the greenhous	
	Dutch-90 th : 154%	of AOEL without H	PPE
	15%	of AOEL with PPE	
Workers	Re-entry activities	in roses in the green	house
	EUROPOEM II: 6	6% of AOEL with	out PPE
	7	% of AOEL with P	PE
	Re-entry activities and cucumber in the	in gherkins, courget ne greenhouse	te, tomato
	EUROPOEM II: 6	0% of AOEL without	ut PPE
	6	% of AOEL with PI	PE
Bystanders	Not applicable (gre	eenhouse application	ns)
Classification and proposed labelling with reg	gard to toxicological (data (Annex IIA, po	oint 10)

	RMS/peer review proposal
Substance classified (name)	Xn "Harmful"
	R22 "Harmful if swallowed"
	R43 "May cause sensitization by skin contact"

Residues

Metabolism in plants (Annex IIA, point 6.1 and 6.7, Annex IIIA, point 8.1 and 8.6)

Plant groups covered	Fruiting vegetables only, artificial substrate only
Rotational crops	not investigated (substrate culture only)
Metabolism in rotational crops similar to metabolism in primary crops?	-
Processed commodities	-
Residue pattern in processed commodities similar to residue pattern in raw commodities?	-
Plant residue definition for monitoring	Sum of triflumizole and FM-6-1 expressed as triflumizole
Plant residue definition for risk assessment	Sum of triflumizole and metabolites containing the 4-chloro-2-(trifluoromethyl)phenyl group
Conversion factor (monitoring to risk assessment)	1.5

Metabolism in livestock (Annex IIA, point 6.2 and 6.7, Annex IIIA, point 8.1 and 8.6)

in feedTime needed to reach a plateau concentration in milk and eggs-Animal residue definition for monitoring-Animal residue definition for risk assessment-Conversion factor (monitoring to risk-	Animals covered	no significant residues (<0.01 mg/kg) are expected
in milk and eggs Animal residue definition for monitoring Animal residue definition for risk assessment Conversion factor (monitoring to risk -		in feed
Animal residue definition for risk assessment - Conversion factor (monitoring to risk -	*	-
Conversion factor (monitoring to risk -	Animal residue definition for monitoring	-
	Animal residue definition for risk assessment	-
assessment)	Conversion factor (monitoring to risk assessment)	-
Metabolism in rat and ruminant similar (yes/no)		-
Fat soluble residue: (yes/no) Not relevant	Fat soluble residue: (yes/no)	Not relevant

Residues in succeeding crops (Annex IIA, point 6.6, Annex IIIA, point 8.5)

not investigated (substrate culture only)

Stability of residues (Annex IIA, point 6 introduction, Annex IIIA, point 8 Introduction)

Triflumizole and metabolite FM-6-1 are stable for only 1 month in watery matrices (cucumber)

Residues from livestock feeding studies (Annex IIA, point 6.4, Annex IIIA, point 8.3)

Expected intakes by livestock ≥ 0.1 mg/kg diet (dry weight basis) (yes/no - If yes, specify the level)

Potential for accumulation (yes/no):

Metabolism studies indicate potential level of residues ≥ 0.01 mg/kg in edible tissues (yes/no)

Ruminant:	Poultry:	Pig:	
Conditions of re-	quirement of feed	ing studies	
no	no	no	
Feeding studies (Specify the feeding rate in cattle and poultry studies considered as relevant)			
Residue levels in matrices : Mean (max) mg/kg			

Liver

Muscle

Kidney

Fat

Milk

Eggs

Summary of residues data according to the representative uses on raw agricultural commodities and feedingstuffs (Annex IIA, point 6.3, Annex IIIA, point 8.2)

Сгор	Northern or Mediterranean Region, field or glasshouse, and any other useful information	Trials results relevant to the representative uses (a)	Recommendation/comments	MRL estimated from trials according to the representative use	HR (c)	STMR (b)
Cucumber	Glasshouse	Triflumizole: 8x<0.02	extrapolation to courgette,	0.1	0.04	0.04
Substrate culture only		FM-6-1: 8x<0.02	gherkin (whole group of			
(extrapolation to			cucurbits with edible peel)			
whole group of						
cucurbits edible peel)						
Tomatoes	Glasshouse	Triflumizole: 0.73, 0.18, 0.45,		1.0	0.78	0.27
Substrate culture only		0.46, 0.16, 0.19, 0.26, 0.12			(0.73 +	
		FM-6-1: 2x<0.02, 3x0.02, 0.03			0.05)	
		0.05, 0.08				

(a) Numbers of trials in which particular residue levels were reported *e.g.* $3 \times < 0.01$, 1×0.01 , 6×0.02 , 1×0.04 , 1×0.08 , 2×0.1 , 2×0.15 , 1×0.17

(b) Supervised Trials Median Residue *i.e.* the median residue level estimated on the basis of supervised trials relating to the representative use (c) Highest residue

Consumer risk assessment (Annex IIA, point 6.9, Annex IIIA, point 8.8)

ADI	0.05 mg/kg bw/
TMDI (% ADI) (maximal value of PRIMo)	9.8% (WHO C
TMDI (% ADI) according to national (to be specified) diets	-
IEDI (WHO European Diet) (% ADI)	-
NEDI (specify diet) (% ADI)	
Factors included in IEDI and NEDI	
ARfD	0.1 mg/kg bw
IESTI (% ARfD)	-
	500/ () D

NESTI (% ARfD) according to national (to be specified) large portion consumption data

(maximal value of PRIMo)

Factors included in IESTI and NESTI

0.05	mg/kg	bw/d
------	-------	------

luster diet B)

58% (tomato, BE child)

7.7% (cucumber)

Processing factors (Annex IIA, point 6.5, Annex IIIA, point 8.4)

Crop/ process/ processed product	Number of studies	Processing factors		Amount	
		Transfer factor	Yield factor	transferred (%) (Optional)	
No information provided and no information needed					

Proposed MRLs (Annex IIA, point 6.7, Annex IIIA, point 8.6)

Cucumber, gherkin, courgette 0.10

Tomatoes

1.0

When the MRL is proposed at the LOQ, this should be annotated by an asterisk after the figure.

Fate and Behaviour in the Environment

Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1)

Mineralization after 100 days ‡	No acceptable data submitted, not required for the intended use.
Non-extractable residues after 100 days ‡	No data submitted, not required for the intended use
Metabolites requiring further consideration ‡ - name and/or code, % of applied (range and maximum)	No acceptable data submitted, not required for the intended use.

_

_

Route of degradation in soil - Supplemental studies (Annex IIA, point 7.1.1.1.2)

Anaerobic degradation ‡

Mineralization after 100 days

Non-extractable residues after 100 days

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)

Soil photolysis ‡

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum) No data submitted, not required for the intended use

No data submitted, not required for the intended use

Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1)

Laboratory studies ‡

Parent	Aerobic conditions						
No acceptable data submitted, not required for the intended use							

Met 1	Aerobic conditions				
No acceptable data submitted, not required for the intended use					

Field studies ‡

Parent	Aerobic conditions				
No data submitted, not required for the intended use					

pH dependence ‡ (yes / no) (if yes type of dependence)

Soil accumulation and plateau concentration ‡

-
No data submitted, not required for the intended use

Soil adsorption/desorption (Annex IIA, point 7.1.2)

Parent	+
raitin	+

No data submitted, not required for the intended use

Metabolite FA-1-1 ‡

No data submitted, not required for the intended use

Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2)

Column leaching ‡	-
Aged residues leaching ‡	-

Lysimeter/ field leaching studies ‡

_		
-		

PEC (soil) (Annex IIIA, point 9.1.3)

Parent

Method of calculation

Application data

PEC (soil) not required for the intended use

Metabolite FA-1-1	PEC (soil) not required for the intended use
Method of calculation	
Application data	-

Route and rate of degradation in water (Annex IIA, point 7.2.1)

Hydrolytic degradation of the active substance	pH 3: 18.5 hours at 20 °C (1 st order, r ² =0.99)					
and metabolites $> 10 \% \ddagger$	metabolites not quantified					
	pH 5: 8.7 days at 25 °C (1 st order, r ² =0.98)					
	Met FD-1-1: 97.4 %AR (30 d)					
	pH 6: 19.7-21.6 days at 20 °C (1 st order, r ² =0.99)					
	metabolites not quantified					
	pH 7: 68.2 days at 25 °C (1 st order, r ² =0.93)					
	Met FD-1-1: 75.8 %AR (30 d)					
	pH 9: 4.6-3.8 days at 20 °C (1 st order, r ² =0.99)					
	metabolites not quantified					
	pH 9: 4 days at 25 °C (1 st order, r ² =0.99)					
	Met FD-1-1: 93.3 %AR (15 d)					
Photolytic degradation of active substance and	DT ₅₀ : 5.9 days					
metabolites above 10 % ‡	Calculated to natural sunlight at 40°N; DT_{50} 12.3 days (12 hour dark light cycle).					
	FD-1-1: 11.2 %AR (6 d)					
	FD-1-1: DT ₅₀ : 6 days					
	Estimated DT_{50} at 40°N for FD-1-1 18.5 days (12 hour dark light cycle).					
	Unidentified M1: 33.2% (15 d, end of study)					
	FM-6-1: 25.9% (9 d)					
Quantum yield of direct phototransformation in water at $\Sigma > 290$ nm	3.21 x 10 ⁻⁵ mol · Einstein ⁻¹					
Readily biodegradable ‡ (yes/no)	No data submitted, substance considered not ready biodegradable.					
	C .					

Parent	Distr	Distribution (eg max in water 104.6 % after 0 d. Max. sed. 71.9% after 28d)									
Water / sediment system	pH wate r phas e	pH sed [KCl]	t. °C	DT ₅₀ -DT ₉₀ whole sys.	St. (r ²)	DT ₅₀ -DT ₉₀ water	St. (r ²)	DT ₅₀ - DT ₉₀ sed	St. (r ²)	Method of calculati on	
Sand ¹	5.7	5	20	48.7/162	0.70	1.9/6.4	0.995	105/348	0.91	SFO	
Clay loam ¹	7.1	7.5	20	117/389	0.67	3.1/10.2	0.984	209/694	0.83	SFO	
Sand ²	5.7	5	20	64/212	0.88	2.6/8.5	0.971	114/379	0.92	SFO	
Clay loam ²	7.1	7.5	20	123/410	0.81	3.5/11.6	0.985	138/458	0.998	SFO	
Geometric mean/median				81.3/272		2.7/9.0		155/398			

Degradation in water / sediment

¹ [¹⁴C-phenyl label]

² [¹⁴C-imidazole label]

Metabolite	Distrib	Distribution (eg max in water 10% after 31 d. Max. sed. 12.9 % after 59 d)								
FA-1-1										
Water / sediment system	pH water phase	pH sed	t. °C	DT ₅₀ -DT ₉₀ whole sys. ¹	St. (r ²)	DT ₅₀ -DT ₉₀ water	r ²	DT ₅₀ - DT ₉₀ sed	St. (r ²)	Method of calculation
Sand	5.7	5	20	n.r.						SFO
Clay loam	7.1	7.5	20	n.r.						
Geometric mean	Geometric mean/median									

 $^{\rm 1}$ no reliable $\rm DT_{50}$ could be calculated for this metabolite

Metabolite imidazole	Distribution (eg max in water 14.6 after 28 d. Max. sed 10.1 % after 14d)									
Water / sediment system	pH water phase	pH sed	t. °C	DT ₅₀ -DT ₉₀ whole sys.	St. (r ²)	DT ₅₀ -DT ₉₀ water	r ²	DT ₅₀ - DT ₉₀ sed	St. (r ²)	Method of calculation
Sand	5.7	5	20	13.2						SFO
Geometric mean	Geometric mean/median									

Mineralization and non extractable residues					
Water / sediment system	pH water phase	pH sed	Mineralization x % after n d. (end of the study).	Non-extractable residues in sed. Max x % after n d	Non-extractable residues in sed. Max x % after n d (end of the study)
Sand ¹	5.7	5	0.17 (101 d)	10.1 after 59 d	9.2 at 101 days

Clay loam ¹	7.1	7.5	0.29 (101 d)	19 after 101 d	19 at 101 days
Sand ²	5.7	5	39.5 (95 d)	16.2 after 28 d	5.8 after 95 days
Clay loam ²	7.1	7.5	19.8 (94 d)	18.5 after 94 d	18.5 after 94 days

¹ [¹⁴C-phenyl label]

² [¹⁴C-imidazole label]

PEC (surface water) and PEC sediment (Annex IIIA, point 9.2.3)

Parent	Version control no. of FOCUS calculator: Step 1-2 version 1.1
Parameters used in FOCUSsw step 1 and 2	Molecular weight (g/mol): 345.8
	Water solubility (mg/L): 10.5 mg/L
	K_{OC}/K_{OM} (L/kg): 0 L/kg (conservative for aquatic phase)
	DT_{50} soil (d): parameter not utilised by the calculator as the no runoff or drainage option was selected, any value can be input
	DT ₅₀ water/sediment system (d): 81.3 d (geomean, n=4)
	DT_{50} water (d): 1000 ¹
	DT ₅₀ sediment (d): value total system ¹
	Crop interception (%): parameter not utilised by the calculator as the no runoff or drainage option was selected, any value can be input
	No runoff and drainage for glasshouse use
Parameters used in FOCUSsw step 3 (if performed)	-
Application rate	Crop: cucumber, ornamentals, worst case GAP
	Crop interception: 50%
	Number of applications: 6
	Interval (d): 7
	Application rate(s): 234 g as/ha
	Application window: no runoff, no drainage
Main routes of entry	Spray drift (0.1% of the dose rate as overall exposure estimation for greenhouse use, 'Dutch' approach).

 1 according to FOCUS Kinetics the DT_{50,syst} was used as DT_{50,water} and 1000 d for DT_{50,sed} and vice versa. Highest PECsw values presented and used for RA

FOCUS STEP Day after	$PEC_{SW}(\mu g/L)$	$PEC_{SED}(\mu g/kg)$
----------------------	---------------------	-----------------------

Peer Review of the pesticide risk assessment of the active substance triflumizole

2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Glasshouse	0 h 24 h 2 d 4 d 7 d 14 d 21 d 28 d 42 d	$\begin{array}{r} 0.463 \\ 0.462 \\ 0.462 \\ 0.461 \\ 0.460 \\ 0.458 \\ 0.456 \\ 0.454 \\ 0.449 \end{array}$	0.462 0.462 0.462 0.462 0.460 0.459 0.459 0.458 0.456		of a Koc of 0 L/kg artitioning to the

Metabolite FA-1-1	Molecular weight: 195.75 g/mol
Parameters used in FOCUSsw step 1 and 2	Water solubility (mg/L): 10.5 (parent value)
	Soil or water metabolite: soil and water (soil not relevant for the intended use)
	Koc/Kom (L/kg): 0 L/kg (conservative for aquatic phase)
	DT_{50} soil (d): parameter not utilised by the calculator as the no runoff or drainage option was selected, any value can be input
	DT ₅₀ water/sediment system (d): 1000 d (default worst- case
	DT ₅₀ water (d): 1000 d (default worst-case)
	DT ₅₀ sediment (d): 1000 (default worst-case)
	Crop interception (%):parameter not utilised by the calculator as the no runoff or drainage option was selected, any value can be input
	Maximum occurrence observed
	Water: 21.76 %
	Sediment: 9.5 %
Parameters used in FOCUSsw step 3 (if performed)	-

Application rate	Crop: cucumber, ornamentals
	Number of applications: 6
	Interval (d): 7
	Application rate(s): 234 g as/ha (parent)
	Depth of water body: 30 cm
	Application window: no runoff, no drainage
Main routes of entry	Spray drift (0.1% of the dose rate as overall exposure estimation for greenhouse use, 'Dutch' approach).

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	0.0601		The assumption of a Koc of 0 L/k assumes no partitioning to the sediment	
	24 h	0.060	0.060		
	2 d	0.060	0.060		
	4 d	0.060	0.060		
	7 d	0.060	0.060		
	14 d	0.060	0.060		
	21 d	0.059	0.060		
	28 d	0.059	0.060		
	42 d	0.058	0.059		

Metabolite imidazole	Molecular weight: 68.08 g/mol
Parameters used in FOCUSsw step 1 and 2	Water solubility (mg/L): 10.5 (parent value)
	Soil or water metabolite: water
	Koc/Kom (L/kg): 0 L/kg
	DT_{50} soil (d):parameter not utilised by the calculator as the no runoff or drainage option was selected, any value can be input
	DT ₅₀ water/sediment system (d): 13.2 d (n=1)
	DT ₅₀ water (d): 1000 d (default worst-case) ¹
	DT ₅₀ sediment (d): system value ¹
	Crop interception (%):parameter not utilised by the calculator as the no runoff or drainage option was selected, any value can be input
	Maximum occurrence observed
	Water: 22.3 %
	Sediment: 10.1 %
Parameters used in FOCUSsw step 3 (if performed)	-
Application rate	Crop: cucumber, ornamentals
	Number of applications: 6
	Interval (d): 7
	Application rate(s): 234 g as/ha (parent)
	Depth of water body: 30 cm
	Application window: no runoff, no drainage
Main routes of entry	Spray drift (0.1% of the dose rate as overall exposure estimation for greenhouse use, 'Dutch' approach).

¹ according to FOCUS Kinetics the $DT_{50,syst}$ was used as $DT_{50,water}$ and 1000 d for $DT_{50,sed}$ and vice versa. Highest PECsw values presented and used for RA

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
2 Scenario	enario overall maximum	Actual	TWA	Actual TWA	
Northern EU	0 h	0.023		The assumption of a Koc of 0 L/kg assumes no partitioning to the sediment	
	24 h	0.023	0.023		
	2 d	0.023	0.023		
	4 d	0.023	0.023		
	7 d	0.022	0.023		
	14 d	0.022	0.022		

Peer Review of the pesticide risk assessment of the active substance triflumizole

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
	21 d	0.022	0.022		
	28 d	0.022	0.022		
	42 d	0.022	0.022		

PEC (ground water) (Annex IIIA, point 9.2.1)

Method of calculation and type of study (<i>e.g.</i>
modelling, field leaching, lysimeter)

Application rate

No calculations; not required with regard to the intended use

Fate and behaviour in air (Annex IIA, point 7.2.2, Annex III, point 9.3)

Direct photolysis in air ‡	Not studied - no data requested
Quantum yield of direct phototransformation	active substance: $\varepsilon = 2.53 \times 10^4$ (at 201.5 nm in methanol)
Photochemical oxidative degradation in air ‡	DT_{50} of 11.7 hours derived by the Atkinson model (version 2001). OH (24 h) concentration assumed = 1.5×10^6 molecules/cm ⁻³ .
Volatilisation ‡	from plant surfaces (BBA guideline): -
	from soil surfaces (BBA guideline): -
Metabolites	FA-1-1 is proposed to be volatile

PEC (air)

Method of calculation

PEC_(a)

Maximum concentration

Based on low vP of the parent and the estimated DT_{50} of 11.7 hours no significant concentration in air is expected

Residues requiring further assessment

Environmental occurring metabolite requiring further assessment by other disciplines (toxicology and ecotoxicology).

Soil:	none from the intended uses
Surface Water: triflumizole, FA-1-1, imidazole	
Sediment:	triflumizole, FA-1-1, imidazole
Ground water: none from the intended uses	

Air: triflumizole by default

Monitoring data, if available (Annex IIA, point 7.4)

Soil (indicate location and type of study)	No data provided - none requested
Surface water (indicate location and type of study)	No data provided - none requested
Ground water (indicate location and type of study)	No data provided - none requested
Air (indicate location and type of study)	No data provided - none requested

Points pertinent to the classification and proposed labelling with regard to fate and behaviour data

Not readily biodegradable. Candidate for R53.

Effects on Non-target Species

Effects on terrestrial vertebrates (Annex IIA, point 8.1, Annex IIIA, points 10.1 and 10.3)

Species	Test substance	Time scale	End point (mg/kg bw/day)	End point (mg/kg feed)
Birds ‡				
Colinus virginianus	a.s.	Acute	>2510	
Anas platyrhynchos	a.s.	Short-term	>1428	>5620
Colinus virginianus	a.s.	Long-term	<u>></u> 97.2	<u>≥</u> 1000
Mammals ‡				
Rat	a.s.	Acute	1057	
Rat	a.s.	Long-term	4.8	
Additional higher tier stud	ies ‡			

Toxicity/exposure ratios for terrestrial vertebrates (Annex IIIA, points 10.1 and 10.3)

Crop and application rate							
Indicator species/Category ²	Time scale	ETE	TER^1	Annex VI Trigger ³			
Tier 1 (Birds)							
	Acute		>1000	10			
	Short-term		-	10			
	Long-term	0.0005	194400	5			
Tier 1 (Mammals)		•	•				
	Acute		>1000	10			
	Long-term	0.0003	16000	5			

¹ in higher tier refinement provide brief details of any refinements used (e.g., residues, PT, PD or AV)

² for cereals indicate if it is early or late crop stage

³ If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance (e.g. many single species data), it should appear in this column.

Toxicity data for aquatic species (most sensitive species of each group) (Annex IIA, point 8.2, Annex IIIA, point 10.2)

		Time-scale	End point	Toxicity ¹
		(Test type)		(mg a.s./L)
Laboratory tests ‡				
Fish				
Salmo gairdneri	NF-114 (purity 98.2%)	96 hr (static)	Mortality, LC ₅₀	0.96
Pimephales promelas	a.s.	35 d (flow- through)	Growth NOEC	0.044
Cyprinus carpio	Rocket EC	96 hr (static)	Mortality, LC ₅₀	1.28
Oncorhynchus mykiss	Metabolite FA- 1-1	96 hr (semi- static)	Mortality, LC ₅₀	5.3
Aquatic invertebrates	·	·		
Daphnia magna	gna a.s. $48 \text{ h (semi-static)}$ Mortality, EC ₅₀		2.11	
Daphnia magna	a.s.	21 d (semi- static)	Reproduction, NOEC	0.18
Daphnia magna	Rocket EC	48 h (static)	Mortality, EC ₅₀	1.59
Daphnia magna	Metabolite FA- 1-1	48 h (static)	Mortality, EC ₅₀	1.64
Sediment dwelling organ	nisms			
Chironomus riparius	Metabolite FA- 1-1	28 d (static)	NOEC	10
Chironomus riparius	Metabolite imidazole	28 d(static)	NOEC	10
Algae				
Selenastrum	a.s.	96 h (static)	Biomass: E _b C ₅₀	0.63
capricornutum			Growth rate: ErC ₅₀	1.66
Selenastrum	Rocket EC	72 h (static)	Biomass: E _b C ₅₀	0.75
capricornutum			Growth rate: E _r C ₅₀	2.5 (nom)
Selenastrum	Metabolite FA-	72 h (static)	Biomass: E _b C ₅₀	11
capricornutum	1-1		Growth rate: ErC50	24

 1 indicate whether based on nominal (nom) or mean measured concentrations (mm). In the case of preparations indicate whether end points are presented as units of preparation or a.s.

Toxicity/exposure ratios for the most sensitive aquatic organisms (Annex IIIA, point 10.2)

FOCUS Step 2

State crop, application rate and growth stage, Northern Europe or Southern Europe

Test substance	N/S ¹	Organism ²	Toxicity end point (mg/L)	Time scale	PEC ³	TER	Annex VI Trigger ⁴
a.s.		Fish	0.96	Acute	0.463	2073	100
a.s.		Fish	0.044	Chronic	0.463	19	10
a.s.		Aquatic invertebrates	1.59	Acute	0.463	3434	100
a.s.		Aquatic invertebrates	0.18	Chronic	0.463	389	10
a.s.		Algae	0.63	Chronic	0.463	1361	10
a.s.		Higher plants ⁵	-	Chronic	-	-	10
a.s.		Sediment-dwelling organisms ⁶	-	Chronic	-	-	10
FA-1-1		Fish	5.3	Acute	0.060 1	88186	100
		Aquatic invertebrates	1.64	Acute	0.060 1	27288	100
		Algae	11	Acute	0.060 1	18302 8	10
		Sediment-dwelling organisms	10	Chronic	0.060 1	16638 9	10
imidazole		Sediment-dwelling organisms	10	Chronic	0.023	43478 3	10
Product ⁷		Fish	1.28	Acute	0.463	2765	100
		Aquatic invertebrates	1.59	Acute	0.463	3434	100
		Algae	0.75	Acute	0.463	1620	10

¹ indicate whether Northern of Southern

² include critical groups which fail at Step 1.

³ maximum values have been used (in μ g/L!).

⁴ If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance, it should appear in this column. E.g. if it is agreed during the risk assessment of mesocosm, that a trigger value of 5 is required, it should appear as a minimum requirement to MS in relation to product approval.

⁵ only required for herbicides

 $^{\rm 6}$ consider the need for ${\rm PEC}_{\rm sw}$ and ${\rm PEC}_{\rm sed}$ and indicate which has been used

⁷ Toxicity expressed in mg a.s./L

Bioconcentration			
	Active substance	FA-1-1	imidazole

Bioconcentration				
log P _{O/W}	4.8	-	-	
Bioconcentration factor $(BCF)^1$ ‡	1417			
Annex VI Trigger for the bioconcentration factor	100			
Clearance time (days) (CT ₅₀)	At target concentration of $0.6 \ \mu g \ as/L$: 5.8 d (fast phase and 38 d (slow phase)			
	At target concentration of 6.0 µg as/L: 7.5 d			
(CT ₉₀)	At target concentration of $0.6 \ \mu g \ as/L$: 19.3 d (fast phase and 126 d (slow phase)			
	At target concentration of 6.0 µg as/L: 24.9 d			

¹ only required if log $P_{O/W} > 3$.

* based on total ¹⁴C or on specific compounds

Effects on honeybees (Annex IIA, point 8.3.1, Annex IIIA, point 10.4)

Test substance	Acute oral toxicity (LD ₅₀ µg a.s./bee)	Acute contact toxicity $(LD_{50} \mu g a.s./bee)$
a.s. ‡	14*	20
Field or semi-field tests		
not required		

* from a test with the preparation Rocket EC

Hazard quotients for honey bees (Annex IIIA, point 10.4)

Crop and application rate

Test substance	Route	Hazard quotient	Annex VI
			Trigger
a.s.	Contact	12	50
a.s.	oral	17	50

Effects on other arthropod species (Annex IIA, point 8.3.2, Annex IIIA, point 10.5)

Laboratory tests with standard sensitive species

Species	Test	End point	Effect
	Substance		(LR ₅₀ g as/ha ¹)
Typhlodromus pyri ‡		Mortality	63

Species	Test	End point	Effect
	Substance		$(LR_{50} g as/ha^1)$
Aphidius rhopalosiphi ‡		Mortality	165

¹ for preparations indicate whether end point is expressed in units of a.s. or preparation

Crop and application rate

Test substance	Species	Effect	HQ in-field	HQ off-field ¹	Trigger
		(LR ₅₀ g as/ha)			
Rocket EC	Typhlodromus pyri	63	not relevant, because only IPM- issue	not relevant, because only IPM-issue	2
Rocket EC	Aphidius rhopalosiphi	165	not relevant, because only IPM- issue	not relevant, because only IPM-issue	2

¹ indicate distance assumed to calculate the drift rate

Further laboratory and extended laboratory studies ‡

Species	Life stage	Test substance, substrate and duration	Dose (g as/ha) ^{1,2}	End point	% effect ³	Trigger value
Encarsia formosa	<24h	Rocket EC 150 g a.s./L,glass plate	30	mortality	4.8 (1 and 4d aging)	30 %
		- France		reproduction	27 (1d aging) +47 (4d	30 %
		directly on pupae	30	reproduction	aging) 13	30 %
Encarsia formosa	<24h	Rocket EC 150 g a.s./L, glass plate	180	mortality	98	30 %
Encarsia formosa		Rocket EC 150 g a.s./L, directly on pupae	350	reproduction	2	30%
Encarsia formosa	<24h	Rocket EC 150 g a.s./L, aged residue (3 days) on leaves	1320	mortality	1.3	25%

Species	Life stage	Test substance, substrate and duration	Dose (g as/ha) ^{1,2}	End point	% effect ³	Trigger value
Phytoseiulus persimilis	1d juveniles	Rocket EC 150 g a.s./L, aged residue (3 days) on bean leaves	180	mortality reproduction	8 6	25% 25%

¹ indicate whether initial or aged residues

² for preparations indicate whether dose is expressed in units of a.s. or preparation

³ indicate if positive percentages relate to adverse effects or not

Field or semi-field tests	
not required	

Effects on earthworms, other soil macro-organisms and soil micro-organisms (Annex IIA points 8.4 and 8.5. Annex IIIA, points, 10.6 and 10.7)

No studies on earthworms, other soil macro-organisms and soil micro-organisms available. Since the application of Triflumizole involves only indoor treatment on artificial substrate, the risk of Triflumizole for soil organisms is considered not relevant and is therefore not required.

Effects on non target plants (Annex IIA, point 8.6, Annex IIIA, point 10.8)

No studies on non-target plants available. Since the application of Triflumizole involves only indoor treatment on artificial substrate, the risk of Triflumizole for non-target plants is considered not relevant and is therefore not required.

Effects on biological methods for sewage treatment (Annex IIA 8.7)

Test type/organism	end point	
Activated sludge	EC ₁₀ (30 min)	EC ₅₀ (30 min)
mixed population of micro-organisms (activated sludge)	61 mg form/L	157 mg form/L

Ecotoxicologically relevant compounds (consider parent and all relevant metabolites requiring further assessment from the fate section)

Compartment	
soil	No data, not required for the intended uses
water	triflumizole, metabolite FA-1-1, metabolite imidazole
sediment	metabolite FA-1-1, metabolite imidazole
groundwater	triflumizole due to toxicity to aquatic organisms

Classification and proposed labelling with regard to ecotoxicological data (Annex IIA, point 10 and Annex IIIA, point 12.3)

	RMS/peer review proposal
Active substance	R50/53
	RMS/peer review proposal
Preparation	R50/53

Appendix B – Used compound code(s)

Code/Trivial name*	Chemical name**	Structural formula**
FA-1-1	4-chloro-α,α,α-trifluoro- <i>o</i> -toluidine	
imidazole	imidazole	
FM-6-1	(1 <i>E</i>)- <i>N</i> -[4-chloro-2-(trifluoromethyl)phenyl]-2- propoxyethanimidamide	
FD-1-1	<i>N</i> -[4-chloro-2-(trifluoromethyl)phenyl]-2- propoxyacetamide	
FD-2-1	<i>N</i> -[4-chloro-2-(trifluoromethyl)phenyl]-2- hydroxyacetamide	
FD-6-1	<i>N</i> -[4-chloro-2-(trifluoromethyl)phenyl]-2-(2- methylpropoxy)acetamide	
FD-7-1	N-(4-chloro-2-trifluoromethylphenyl)-oxalamic acid or {[4-chloro-2- (trifluoromethyl)phenyl]amino}(oxo)acetic acid	
FM-2-1	(2 <i>E</i>)-2-{[4-chloro-2- (trifluoromethyl)phenyl]imino}-2-(1 <i>H</i> -imidazol-1- yl)ethanol	

FM-5-1	(1 <i>E</i>)- <i>N</i> '-[4-chloro-2-(trifluoromethyl)phenyl]- <i>N</i> - formyl-2-propoxyethanimidamide	
FM-8-1	(1 <i>E</i>)- <i>N</i> '-[4-chloro-2-(trifluoromethyl)phenyl]-2- hydroxyethanimidamide	F F CI N NH ₂ OH
FA-1-5	2-amino-5-chloro-3-(trifluoromethyl)phenol	

* The metabolite name is the name used in the conclusion.
** ACD/ChemSketch, Advanced Chemistry Development, Inc., ACD/Labs Release: 12.00 Product version: 12.00 (Build 29305, 25 Nov 2008)

ABBREVIATIONS

1 /	
1/n	slope of Freundlich isotherm
3	decadic molar extinction coefficient
°C	degree Celsius (centigrade)
μg	microgram
μm	micrometer (micron)
a.s.	active substance
AChE	acetylcholinesterase
ADE	actual dermal exposure
ADI	acceptable daily intake
AF	assessment factor
AOEL	acceptable operator exposure level
AP	alkaline phosphatase
AR	applied radioactivity
ARfD	acute reference dose
AST	aspartate aminotransferase (SGOT)
AV	avoidance factor
BCF	bioconcentration factor
BUN	blood urea nitrogen
bw	body weight
CAS	Chemical Abstract Service
CFU	colony forming units
ChE	cholinesterase
CI	confidence interval
CIPAC	Collaborative International Pesticide Analytical Council Limited
CL	confidence limits
d	day
DAA	days after application
DAR	draft assessment report
DAT	days after treatment
DM	dry matter
DT50	period required for 50 percent disappearance (define method of estimation)
DT90	period required for 90 percent disappearance (define method of estimation)
dw	dry weight
EbC50	effective concentration (biomass)
EC50	effective concentration
ECHA	European Chemical Agency
EEC	European Economic Community
EINECS	European Inventory of Existing Commercial Chemical Substances
ELINCS	European List of New Chemical Substances
EMDI	estimated maximum daily intake
ER50	emergence rate/effective rate, median
ErC50	effective concentration (growth rate)
EU	European Union
EUROPOEM	European Predictive Operator Exposure Model
f(twa)	time weighted average factor
FAO	Food and Agriculture Organisation of the United Nations
FIR	Food intake rate
FOB	functional observation battery
FOCUS	Forum for the Co-ordination of Pesticide Fate Models and their Use
g	gram
GAP	good agricultural practice
GC	gas chromatography

GCPF	Global Crop Protection Federation (formerly known as GIFAP)
GGT	gamma glutamyl transferase
GM	geometric mean
GS	growth stage
GSH	glutathion
h	hour(s)
ha	hectare
Hb	haemoglobin
Hct	haematocrit
hL	hectolitre
HPLC	
HPLC	high pressure liquid chromatography
	or high performance liquid chromatography
HPLC-MS	high pressure liquid chromatography – mass spectrometry
HQ	hazard quotient
IEDI	international estimated daily intake
IESTI	international estimated short-term intake
ISO	International Organisation for Standardisation
IUPAC	International Union of Pure and Applied Chemistry
JMPR	Joint Meeting on the FAO Panel of Experts on Pesticide Residues in Food and
	the Environment and the WHO Expert Group on Pesticide Residues (Joint
	Meeting on Pesticide Residues)
Kdoc	organic carbon linear adsorption coefficient
kg	kilogram
KFoc	Freundlich organic carbon adsorption coefficient
L	litre
LC	liquid chromatography
LC50	lethal concentration, median
LC-MS	liquid chromatography-mass spectrometry
LC-MS-MS	liquid chromatography with tandem mass spectrometry
LD50	lethal dose, median; dosis letalis media
LD30 LDH	lactate dehydrogenase
LOAEL	lowest observable adverse effect level
LOALL	limit of detection
	limit of quantification (determination)
LOQ	
m M/I	metre
M/L	mixing and loading
MAF	multiple application factor
MCH	mean corpuscular haemoglobin
MCHC	mean corpuscular haemoglobin concentration
MCV	mean corpuscular volume
mg	milligram
mL	millilitre
mm	millimetre
MRL	maximum residue limit or level
MS	mass spectrometry
MSDS	material safety data sheet
MTD	maximum tolerated dose
MWHC	maximum water holding capacity
NESTI	national estimated short-term intake
ng	nanogram
NOAEC	no observed adverse effect concentration
NOAEL	no observed adverse effect level
NOEC	no observed adverse effect rever
NOEL	no observed effect level

OM	anania mattan aantant
OM Pa	organic matter content Pascal
- ••	
PD	proportion of different food types
PEC	predicted environmental concentration
PECair	predicted environmental concentration in air
PECgw	predicted environmental concentration in ground water
PECsed	predicted environmental concentration in sediment
PECsoil	predicted environmental concentration in soil
PECsw	predicted environmental concentration in surface water
pH	pH-value
PHED	pesticide handler's exposure data
PHI	pre-harvest interval
PIE	potential inhalation exposure
pKa	negative logarithm (to the base 10) of the dissociation constant
Pow	partition coefficient between n-octanol and water
PPE	personal protective equipment
ppm	parts per million (10-6)
ppp DT	plant protection product
PT	proportion of diet obtained in the treated area
PTT	partial thromboplastin time
QSAR	quantitative structure-activity relationship coefficient of determination
r2	
RPE	respiratory protective equipment
RUD	residue per unit dose
SC	suspension concentrate
SD	standard deviation
SFO	single first-order
SSD	species sensitivity distribution
STMR	supervised trials median residue
t1/2	half-life (define method of estimation)
TER	toxicity exposure ratio
TERA	toxicity exposure ratio for acute exposure
TERLT	toxicity exposure ratio following chronic exposure
TERST	toxicity exposure ratio following repeated exposure
TK	technical concentrate
TLV	threshold limit value
TMDI	theoretical maximum daily intake
TRR	total radioactive residue
TSH	thyroid stimulating hormone (thyrotropin)
TWA	time weighted average
UDS	unscheduled DNA synthesis
UV W/C	ultraviolet
W/S	water/sediment
w/v	weight per volume
W/W	weight per weight
WBC WC	white blood cell
WG	water dispersible granule World Health Organization
WHO	World Health Organisation
wk	week
yr	year