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1. DEFINITION and DISTRIBUTION 

 

African Swine Fever (ASF) is caused by a complex DNA virus classified in the Asfarviridae family, 

genus Asfivirus, which infects different species of soft ticks and wild and domestic pigs. In the 

vertebrate hosts, the aetiological agent replicates preferentially in monocyte and macrophage cells 

and causes a range of symdromes and lesions from peracute to chronic and unapparent forms of 

disease. 

Actually, it is one of the most important diseases of domestic pigs, being of an exceptional 

seriousness, which can easily spread abroad and for which sanitary and socio-economical 

consequences have a significant impact on the national and international trade of animals and 

animal products. For this reason, it is listed as a Notifiable disease to the World Animal Health 

Organisation (OIE). At present there is no treatment or vaccine available, and control is based on 

rapid laboratory diagnosis and the enforcement of strict sanitary measures (Sanchez-Vizcaino, 

2006). The virus has been maintained in African wild swine for a very long time: in eastern and 

southern Africa it is found in warthogs (Phacochoerus aethiopicus) and bushpigs (Potamochoerus 

porcus) also it is found in soft ticks of Ornithodoros genus. The wild swine in Africa can stay 

infected over a long period without showing any symptom of the disease -and thus can be 

considered as natural reservoirs of the disease, in contrast to the European wild boar (Sus scrofa) 

which appear to be highly susceptible (McVicar et al., 1988). The virus can be transmitted between 

O. moubata ticks by trans-stadial transmission as well as by sexual and trans-ovarian pathway, in 

contrast to O. erraticus in Europe where only trans-estadial transmission has been observed 

(Sanchez-Vizcaino, 2006). The asymptomatic wild suids and the transmission among ticks allow a 

cycle which can be maintained indefinitely in Africa (Parker et al., 1969). 

 

ASF is originally indigenous to the African continent south of the Sahara. The disease made its 

appearance at the beginning of this century in Kenya (Montgomery, 1921) when the balance 

between its natural hosts and the infectious agent was altered by the introduction of domestic pigs 

by colonists from Europe into Africa (Scott 1965, Pini & Hurter 1975). During the first decades it 
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was confined in Africa until it was detected for the first time outside the African continent in 

Portugal in 1957, causing hyperacute disease and 100% mortality. After a silent period it reappeared 

in this country in 1960 (1960-1993; 1999) and was consecutively found in Spain (1960-1995), 

France (1964), Italy (1967, 1969, 1993), Malta (1978), Belgium (1985) and The Netherlands 

(1986). (Arias and Sanchez-Vizcaino, 2002a) Except for Sardinia where the disease is endemic all 

countries managed to eradicate ASF. Recently, the Caucasus region was affected and the infection 

is believed to remain in South Russia, Georgia and Armenia (2007-2008). In America, Cuba was 

the first country to be affected in 1971. The disease was eradicated but only after more than 400 000 

pigs had died or were slaughtered. In 1978 ASF entered Brazil, spreading to the Dominican 

Republic (1978), Haiti (1979) and again Cuba (1980). The disease was eradicated from the western 

hemisphere by depopulation (Arias and Sanchez-Vizcaino, 2002b).  

According to the OIE available data, it is noticeable that ASF has occurred in most of East and 

Southern African countries for the last 3 years (Figure 1). No case was apparently reported in 

Botswana, Swaziland and Sudan and no information is available for Zimbabwe, Lesotho, Ethiopia, 

Somalia, Eritrea and Chad. For some countries like Chad, Sudan, Somalia and Eritrea, pig 

production is not highly developed, leading to low risk of ASF even outbreaks have been recorded 

in the past. For the other countries, because they are surrounded by countries where ASF occurs 

regularly, such negative results must be considered more likely a lack of official reporting. In 

Central Africa, ASF has been confirmed in the Democratic Republic of Congo and the Republic of 

Congo. No case has been declared since 2005 from Central African Republic and Gabon whereas 

previous outbreaks were previously reported. Finally, in West Africa, ASF outbreaks have been 

reported in Senegal, Nigeria, Benin, Togo, Burkina Faso, Ghana and Cameroon during the last 4 

years. No case was recorded from Ivory Coast and no information is available from Gambia, 

Guinea and Guinea-Bissau. Considering the current political instability in Ivory Coast, we may 

consider that no report means absence of complete information. 
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Figure 1: Map indicating the occurrence of ASF in African countries during the last 4 years (2005-

2008) and the epidemiological status of African countries for ASF. 
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2. AETIOLOGY 

 

2.1. GENOME AND VIRION ORGANIZATION 

2.1.1. ASFV classification and taxonomy 

The causative agent of the disease is the African swine fever virus (ASFV) a complex large 

icosahedral and enveloped double strand DNA virus. These features were originally responsible for 

the classification of ASFV within the Iridoviridae family. However, some unique characteristics of 

ASFV structure and genomic information led the international committee on Taxonomy of Viruses 

(ICTV) to create a new family, Asfarviridae (African swine fever and related viridae) into which 

ASFV is the unique member and is included in the new Asfivirus genus (Dixon et al., 2005). Like 

all poxviruses, ASFV replicates mainly in the cytoplasm of the infected cells. It shares with the 

Poxvirus a similar genomic organisation, like hairpins ends of the genome with inverted repeat 

sequences in terminal position (De la Vega et al., 1994). ASFV particles also contain the necessary 

machinery for both the synthesis and maturation of early viral mRNA. 

 

The characteristics shared by ASFV with other large DNA viruses that replicate in the cell 

cytoplasm suggest they may have a common ancestor. These different viruses are indeed part of the 

Nucleo-cytoplasmic Large DNA Virus families which regroups Poxviridae, Iridovirdae, 

Phycodnaviridae and Mimiviridae (Iyer et al., 2006). Phylogenetic analysis however discriminate 

the asfarviruses into a distinct clade than the clades of poxviruses and iridoviruses (Raoult et al., 

2004). It must be noticed that ASFV is the only known DNA virus to be an arbovirus (arthropod-

borne virus, Wardley et al., 1983). ASFV infects soft ticks of the Ornithodoros genus (Plowright et 

al., 1974). 

 

 2.1.2. Virus structure 

Virus particles are organized as a complex multi-layers structure (Carrascosa et al., 1984). Virions 

are composed by an 80 nm core shell containing the virus genome in a 30 nm nucleoid (forming the 

nucleoprotein system), surrounded by a first lipid layer (inner envelop) then by a protein layer 
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forming the icosahedral capsid from 170 to 190 nm in diameter. The capsid results from the 

assembling of 13 nm hexagonal capsomers, sort of prisms with a central hole. The distance between 

two capsomers is about 8 nm (from 7.4 to 8.1) and the icosahedral shape allows an assembling from 

1892 to 2172 capsomers to form a mature viral particle. The extra cellular virions acquire an 

external membrane during the budding through the cellular plasma membrane (Rouillier et al., 

1998). Their final size is comprised between 175 to 215 nm. The extra cellular virions contain the 

genome and ASFV enzymes and proteins that are involved in the early genes expression after the 

virus entry into the cell. 

 

The analysis of the viral particle, either by electron microscopy, confocal microscopy, genetic or 

biochemical techniques allowed the identification of at least 54 structural proteins with a size 

ranging from 10,000 to 150,000 Da (Carrascosa et al., 1985). Some of these proteins have been 

localized in the virus. Attachment proteins p12 and p24 are found on the external membrane of the 

extracellular particles (Alcami et al., 1992) while p150, p37, p34 and p14 proteins (resulting from 

the cleavage of the polyprotein pp220) are localized in the virus core. The external envelope 

contains also the CD2v (EP402R), the only glycoprotein of the viral particle (Ruiz-Gonzalvo et al., 

1996). This protein is involved in the virus haemadsorbing property. The VP72 protein (B646L 

gene) is the main component of the viral capsid and is surrounding the inner virus envelope 

acquired intracellularly by the non enveloped virions. It is not however an integral membrane 

protein (Cobbold and Wileman, 1998). A contrario, the most important integral membrane protein 

is p54 encoded by the E183L gene and localised in the outer virus envelope. The inner viral 

envelope is very complex since it contains also other viral proteins with transmembrane domains, 

including j18L (E199L), p12 (O61R) or p17 (D117L) (Alcami et al., 1992, Sun et al., 1996). 
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ASFV particles contain different enzymes of replication, an RNA-polymerase-DNA-dependant 

playing also a role in the mRNA polyadenylation, methylation and capping. Other enzymes are 

found in the virions like kinase, nucleoside phosphohydrolase, acid phosphatase and two 

deoxyribonucleases with an action on single strand DNA (Yanez et al., 1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic representation of ASFV. The virus has a core shell containing the nucleoid. 

The virus core is constituted by the assembly of p150, p37, p34 and p14 (resulting of pp220 

cleavage) and by the p14.5 and the p10 proteins. The core shell is surrounded by a capsid composed 

at 35% with the VP72 protein and with the p17 protein. Then an inner membrane composed by the 

assembly of p22, p54, p32 (phosphoprotein inserted in a hexamer form), p12 (dimer) and the CD2v 

(haemadsorbtion protein) surrounds the capsid. Extra-cellular virions possess an external envelope 

acquired during the budding at the cell plasma membrane. Other proteins are known but remain not 

well localized like p49 (capsid), p35 and p15 (from the pp62 cleavage) as well as some enzymes 

contained in the virion. 
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2.2. STRAINS, GENETIC TYPING AND VIRULENCE 

 2.2.1. Antigenic variability 

The comparison between isolates in term of genome size and enzymatic restriction profile revealed 

a high level of variability. This variability comes mainly from 35 kb at the 3‟ end of the genome and 

from 15 kb at the 5‟ end (Wesley and Tuthil, 1984, Blasco et al., 1989a, b). These two regions of 

the genome contain the multigene families (MGF) and are the principal sites of insertions and 

deletions, up to 9 kb (Gonzales et al., 1990; de la Vega et al., 1990; Almendar et al., 1990; 

Vydelingum et al., 1993; Yazawa et al.; 1994). The same characteristics have been observed in the 

genomes of isolates adapted on monkey fibroblast cell culture (Blasco et al., 1989a; Tabares et al., 

1987). These variations are due to a change in the number of genes in the MGF, allowing a large 

diversity between isolates by gene homologous recombination. A diminution in the number of MGF 

genes seems to be associated with lower virus virulence (Tabares et al., 1987). 

 

Comparison of the ASFV genomes showed that 85% of the encoded proteins were identical 

between viruses, the more variable ones belonging to the MGF. Variability is also frequently 

generated by a change in the number of amino-acid in tandem repeats. These repeats have been 

detected in 14 viral proteins among which the CD2 homologous (EP402R), the α-like DNA 

polymerase and the p54 protein (E183L) (Yanez et al., 1995; Rodriguez et al., 1994). 

 

Another possible distinction between isolates is the inhibition of the haemadsorbtion properties of 

the virus using sera of infected animals. In fact, pigs surviving infection or pigs infected with low 

virulent isolates generate antibodies that inhibit virus-specific haemadsorbtion (Ruiz-Gonzalvo et 

al, 1993). This method allowed to distinguish three large groups: group A (Lisbon57, Funchal65 

and Katanga67 isolates), group B (Lisbon60, Madrid60 and Angola72) and group C 

(Mozambique64). Nevertheless, some non-haemadsorbing isolates were then isolated, making this 

method of classification obsolete because of its lack of fine discrimination. 
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Antigenic variability between isolates grown both on pig macrophages and Vero cells was 

determined using monoclonal antibodies against structural viral proteins (Whyard et al., 1985). This 

study assigned 23 isolates from Africa, Europe and South-America into 6 antigenic groups but no 

discrimination according to the geographical origin of these isolates could be evidenced. 

Nevertheless, African isolates are more diverse, probably because of the longer period of virus 

circulation in this continent whereas recent European and American isolates have probably emerged 

from a common ancestor and have spread within only a period of 40-50 years after the initial 

introduction in Europe during the 50s.  

Recent molecular tools based on nucleic acid amplification and sequencing, have been introduced to 

better differentiate virus isolates. 

 

2.2.2. Virus genome 

The ASFV genome consists of a linear double strand T-A rich DNA molecule from 170 to 190 kb 

of length depending on the isolates. Such difference in the genome length is resulting from the 

presence or absence of sequence repeats inserted in tandems in the viral genome during the virus 

replication. At the termini of the genome, the two DNA strands are covalentely tied by hairpin loops 

of 37 nucleotides with mainly T and A nucleotides incompletely base-paired (Gonzales et al., 

1986). Immediately adjacent to these termini are found inverted sequence repeats of 2.1 to 2.5 kb in 

length. For the Ba71v isolate which was the first genome completely sequenced, the terminal 

repeats consist of 2134 nucleotides (nt) with different rearrangements of three different tandem 

repeats and two different repeats interspersed by unique sequences (Yanez et al., 1995). 

 

The full-genome sequencing of several isolates has permitted to identify between 160 and 175 

putative open reading frames (ORFs). These ORFs are located on the two strands of the DNA 

molecule which therefore can be read in the two directions (Dixon et al., 1994; Yanez et al., 1995). 

The genome contains gene-specific viral promoters which are able to drive either an early, 

intermediate or late expression of the genes during the virus replication cycle (Almazan et al., 1992; 

Almazan et al., 1993; Rodriguez et al., 1996b) 

 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 11 
 

A large part of the genome is composed by five different types of multigene families (MGF): MGF 

360, MGF 110, MGF 300, MGF 530 (or 505) and MGF 100. The variability in genome length 

results from the loss or gain of MGF genes (De la Vega et al., 1990; Yozawa et al., 1994). The 

central part of the inverted terminal sequence repeats contains 33 sequences of 34 nt associated in 

tandem-repeats. These motif repeats are also found in other positions of the ASFV genome. Two 

different types of internal repeats were described: small direct tandem repeats of about 10 to 50 nt 

localized both in the inter- and intra-genic regions of the genome and long tandem repeats of about 

200 nt in the 5‟ terminal region of the genome (Dixon et al., 1994). Also, there is a central variable 

region of about 400 nt within a highly conserved region of 125 kb (Sumption et al., 1990). 

 

The first ASFV genome completely sequenced was obtained from the Ba71v isolate, a Vero cell 

culture adapted virus derived from an isolate collected in Spain during the 70s (Yanez et al., 1995). 

The Ba71v genome is 170.101 nt long with a GC% of 38.95 and 151 putative genes. The genes 

nomenclature was done based on the analysis of this genome and the HindIII restriction profile. So 

a gene‟s name is the HindIII restriction fragment followed by the number of amino acid encoded 

and a letter indicating the orientation of the gene, left (L) or right (R) ends of the genome (Yanez et 

al., 1995). The adaptation of the initial isolate in cell culture has resulted in the loss of large parts of 

the genome at its right end. Then, another nomenclature for the genes absent of the Ba71v genome 

has been used based on the Malawi isolate Lil20/1 and its Sal I fragment (Dixon et al., 1994). 

 

More recently 9 new ASFV isolates were sequenced: a European isolate (AF302811), a Western 

African one (AF302816) and 7 other isolates from Eastern and Southern Africa (AY261361, 

AY261360, AY578700, AY261363, AY578704 and AY578706). The European isolate is a low 

virulent virus isolated in Portugal whereas the 8 other ones are field collected viruses isolated from 

domestic pigs, wild swine or ticks in Africa. Their genome varies between 171.719 nt for the 

Portuguese OURT88/3 isolate and 193.886 nt for the Kenya50 isolate, owing to insertions and 

deletions in the 40 kb left-end and 25 kb right-end of the genome. The genes that are mainly 
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concerned are the MGF 530, 360 and 110. Some genes like KP177R coding for the p22 protein can 

have multiple copies in the genome (Chapman et al., 2008). 

 

The genome variations observed between isolates are mainly insertions or deletions. However, the 

extent of variability in the sequence of the ASFV genome is not well defined. Sequence 

comparisons often show limited variations with DNA viruses compared to RNA viruses because of 

the higher degree of nt conservation during replication of the former. Nevertheless, some genes 

were actually found variable enough to discriminate isolates in different groups.  

 

2.2.3. Genetic characterization of ASFV isolates  

 

The partial sequencing of the B646L gene coding for the major capsid protein followed by the 

construction of phylogenetic trees showed a common lineage of isolates collected on domestic pigs 

in West Africa, Europe, Caribbean and South America. These isolates are so genetically related that 

they cannot be distinguished within the genotype I in spite of almost 50 years of circulation and 

spread over 3 continents. It must be stressed that these isolates were not established in an African-

like sylvatic cycle although for instance European soft ticks are infected and wild boars are 

susceptible to the disease. In contrast, isolates from ticks and wild swine established in a sylvatic 

cycle in East and South Africa show more diversity between them, accrediting the thesis of a co-

evolution of the virus in its natural reservoirs/hosts (Bastos et al., 2003; Lubisi et al., 2005). Since 

all domestic pig viruses isolated from East-Africa over a period of 40 years are close together, it 

seems that the introduction of new variants from wild life to domestic pigs is a rare event, thus 

supporting the idea that the domestic cycle may run independently from the sylvatic cycle (Lubisi et 

al., 2005). 

 

Using partial p72 nucleotide sequences of ASFV, Bastos et al. (2003) characterized numerous field 

isolates of diverse species, as well as distinct temporal and geographical origins, in order to clarify 

genetic relationships of ASFV (Fig. 3).  
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In agreement with previous genotyping grouped by restriction fragment leght polymorphism 

(RFLP) analysis (Blasco et al., 1989), European, Caribbean, South America and West Africa 

isolates are all related to genotype I, which is the largest and most homogeneous p72 genotype, 

referred to as the ESAC-WA genotype (Bastos et al., 2003), which was introduced to Portugal from 

West Africa in 1957. 

On the African continent, there are two distinct epidemiological regions are recognized:  

- The Western and Central parts of Africa, from Namibia to Democratic Republic of Congo 

and to Senegal, where the unique genotype I is circulating. Its high homogeneity does not 

allow discerning the exact origin of the virus exported from Eastern Africa to Western 

Africa and Europe or to differentiate between outbreaks occurring as early as 1959 and as 

recently as 2000 in West Africa. However, it greatly suggests the absence of a 

diversification driven by a sylvatic cycle in West Africa although such cycle seems to exist 

in its original Southern African countries. 

- The Eastern and Southern parts of Africa, from Uganda and Kenya to South Africa, where 

high levels of genetic variations are observed. A total of 22 genotypes are described, with 13 

and 14 genotypes in Eastern and Southern Africa, respectively. This high genetic diversity is 

coherent with the presence of a sylvatic cycle in most of these countries, which plays a 

crucial part in the epidemiology of the disease (Lubisi et al. 2005, Boshoff et al. 2007). 

Zambia is particularly genotype rich with seven genotypes being identified, followed by 

South Africa with six, Mozambique with four, Malawi and Tanzania with three each, and 

Kenya and Uganda with two each (Lubisi et al. 2005, Boshoff et al. 2007). 

 

Within this latter region, some genotypes (VIII and XIX) are extremely homogeneous and seem to 

be associated to pig-restricted cycles or pig-domestic tick exchanges whilst some others (V, X, XI, 

XII, XIII, XIV) were either isolated from domestic pigs, wild ticks or warthogs, confirming their 

circulation in both sylvatic and domestic cycles (Lubisi et al. 2005, Boshoff et al. 2007). Some 

genotypes are apparently country specific (V, VI, IX, XI, XIII, XIV, XV and XVI) while others (I, 

II, V, VIII, X and XII) are not restricted by national boundaries. Because of this co-circulating of 
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different genotypes in same locations or at same periods (for example, the homogeneous VIII and 

the heterogeneous XII genotypes in Malawi), it has been difficult to describe until now country- or 

zone-specific epidemiological patterns related to vertebrate and arthropod hosts and leading to 

different virulence or pathogenic effects. 

 

However, using p72 and other molecular markers such as 9RL ORF, Lubisi (2005) and Boshoff 

(2007) showed the great interest of genetics to distinguish viruses causing outbreaks that are 

geographically or temporally related. For example, it was clearly shown that ASF outbreaks 

occurring in Uganda in 1995 were caused by two different viruses whilst the 1984 and 1990 

outbreaks in Burundi were caused by identical viruses (Bastos et al. 2003, Lubisi et al. 2005). 

Furthermore, the outbreaks occurring in South Africa in 1995 and 1996 and believed to represent 

two unrelated epizootics, were in fact shown to be due to four genotypically unrelated viruses; these 

results contrast markedly with the recovery of a unique genotype from the temporally unrelated 

1987, 1992 and 1996 outbreaks in South Africa, indicating a prolonged field presence for this virus 

(Boshoff et al. 2007). Finally, it was shown that the viruses recovered from the single outbreak 

focus in 1998 in Mozambique belonged to the two unrelated genotypes II and VIII although past 

outbreaks in 1994 showed the same virus in two geographically distinct regions of Mozambique 

(Bastos et al. 2004). Prolonged activity of both genotypes has been supported by the recovery of a 

genotype II virus from outbreaks in Nampula and Cabo Delgado provinces of Mozambique between 

2001 and 2003, and a genotype VIII virus from an outbreak in Zambézia Province in 2001. Then, 

the parallel identification of the genotype II in Madagascar clearly suggested that Mozambique was 

the most likely source of infection for the 1998 introduction of ASFV into Madagascar (Bastos et 

al. 2004). 

The genetic characterization of ASFV samples from Georgia (2007) carried out by the OIE 

reference laboratory at the Institute of Animal Health in Pirbright (UK) determined by sequence 

analysis of 2 genome fragments (from the p72 and the B602L gene) that it belonged to the same 

genotype that had been isolated between 1993 and 2002 in Mozambique and Zambia, and in 1998 
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in Madagascar, classified as genotype II (Lubisi et al., 2005) (communication by Drs. Oura and 

Dixon from the IAH published in proMED post no. 20070909.1886, 9
th

 June 2007) 

 

Fig. 3. Geographical distribution of ASFV p72 genotypes (Bastos et al., 2003) 

 

 

2.3. VIRUS ENTRY – MRNA TRANSCRIPTION – TRANSLATION – REPLICATION   
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ASFV has a preferential tropism for swine monocytes and macrophages even if different 

susceptibility to infection can be observed according to the maturation stage of these cells (Wardley 

et al., 1977, Minguez et al., 1988). The virus can infect dendritic cells as well as endothelial cells, 

however, the main target cells for the virus replication in vitro and in vivo remains the macrophages 

(Rodriguez et al., 1996a, Vallee et al., 2001). At late stages of the infection, the virus can infect 

other types of cells like megakaryocytes, platelets, neutrophils or hepatocytes (Carrasco et al., 1992, 

Fernandez et al., 1992a, Fernandez et al., 1992b). Moreover, some ASFV isolates have been 

adapted on cell cultures like Vero or Cos cell lines. In any case, ASFV replicates in non nucleated 

cells because it requires a DNA synthesis in the cell nucleus (Ortin and Vinuela, 1977). 

  

The susceptibility of a cell to ASFV infection depends on the cell surface receptor(s). Macrophages 

which represent the intermediate to late stage of monocyte maturation are the main target of the 

virus. Actually, permissive cells all express the SWC9 or the CD163 (a cell surface maturation 

marker, Sanchez et al., 1999, Mc Cullough et al., 1999, Sanchez-Torres et al., 2003). The virus 

entry involves an endocytosis receptor-mediated pathway possibly using lysosomes. It was shown 

that the use of drugs increasing the pH in lysosomes inhibited the virus entry into the cells (Alcami 

et al., 1989, Valdeira et al., 1998). The virus attachment protein is the p12. This protein contains a 

hydrophobic transmembrane domain anchored into the virus envelope (Angulo et al., 1993). P12 is 

a late protein with a very high level of conservation among the different viruses. Immediately after 

entry, very early genes are transcribed in mRNA by the DNA-dependent RNA-polymerase present 

in the virion. mRNAs are then polyadenylated and capped by other enzymes that are also packaged 

into the virus particle (Yanez et al., 1993). Essential factors for the early gene transcription have 

already been described (Salas, 1999), possibly including the proteins encoded by the homologous 

poxvirus genes A2L (B385R for ASFV), A7L (G1340L) and VLTF2 (B175L) (Iyer et al., 2006). 

Other mRNAs are produced at early or intermediate stages but they remain silent until DNA 

replication takes place. At last, late mRNAs are produced. Early promoters are localized at a short 

distance upstream from the start codon. They are rich in AT and about 50 bp long. Most of the early 

genes have a sequence of at least 7 T at their 3‟-end although a sequence of 10 T is usually required 
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for the termination of transcription. This particularity may lead into a remote termination of the 

transcription up to a next termination signal suggesting the possibility of polycystronic mRNAs 

(Almazan et al., 1992; Almazan et al., 1993; Goatley et al.; 2002). The presence of early, 

intermediate and late mRNAs is compatible with a gene regulation in cascade. 

 

Even if the virus replication takes place into the cytoplasm (Rojo et al., 1999), the cell nucleus 

seems to be necessary for DNA synthesis (Garcia-Beato et al., 1992). The replication occurs in 

some discrete perinuclear areas called “virus factories” (Garcia-Beato et al., 1992). The DNA 

synthesis required several enzymes like a virus-induced polymerase probably encoded by the 

G1207R gene, a homologous α-like DNA polymerase (Rodriguez et al., 1993) and three more 

enzymes: a thymidine kinase (Martin Hernandez and Tabares, 1990), a ribonucleotide reductase 

(Cunha and Costa, 1992) and a DNA ligase (Yanez and Vinuela, 1993). It is remarkable that ASFV 

also encodes enzymes for DNA maturation and reparation like an apurinic/apirimidic endonuclease 

and a β-pol type polymerase (Oliveros et al., 1997). The reason why the initiation of the replication 

happens close to the nucleus remains unclear to date. Nevertheless the analysis of intermediate 

DNA replicates showed that at early stages of infection, short DNA fragments are found into the 

nucleus whereas later on, longer molecules are synthesized in the cytoplasm. These intermediate 

short DNA molecules could be the precursors for the formation of a full viral genome in the 

cytoplasm (Rojo et al., 1999). But there is no real information concerning the transport of these 

small DNA molecules inside and outside the nucleus. However, two nuclear localisation signals 

have been described on the viral protein p35 and may possibly have a role in the transportation of 

ASFv DNA molecules into the nucleus (Eulalio et al., 2004). 

 

In infected cells, 81 acid and 14 basic proteins have been identified with a molecular weigh ranging 

between 10 and 220 kDa (Carrascosa et al., 1984, Carrascosa et al., 1985, Esteves et al., 1986). Like 

the mRNAs described previously the proteins can be also classified in three distinct groups: the 

early proteins synthesised before the DNA replication, the proteins synthesised all along the 

replication cycle and the late proteins. Newly synthesised viral proteins can undergo post-
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translation modifications. Thus, the polyproteins pp62 and pp220 are cleaved at Gly-Gly-X amino-

acid consensus sequences (Lopez-Otin et al., 1989) leading to the generation of 6 structural proteins 

as described previously. In addition, some of the virus proteins will be myristoylated (pp220) and 

many of them being phophorylated (Afonso et al., 1992).  

 

The transcription of the viral genes takes place in the cell cytoplasm and is independent of the cell 

RNA-polymerases. Early transcripts are needed to undergo to the later stages of the virus 

replication. 3- the replication of the genome takes place in the cytoplasm. The genome size varies 

between 150 and 190 kb. 4- expression of intermediate/late genes is dependent on the late stages of 

replication. Late RNAs encode structural proteins and enzymes which are packaged into the new 

virus particle. 5- virus assembly takes place in some discrete perinuclear areas called “virus 

factories”. 6- the virus egress is done by budding through the plasma membrane giving to the new 

virion its external envelope. 

 

Morphogenesis 

 

ASFV morphogenesis is a very complex process which takes place in the same perinuclear “virus 

factories” (Andrés et al., 1997, Brookes et al., 1996). These factories are adjacent to the Golgi 

complex, the microtubule network and resemble aggresomes as they are surrounded by endoplasmic 

reticulum cisternae, mitochondria and a vimentin cage (Andrés et al., 1997, Rojo et al., 1998, Heath 

et al., 2001). The vimentin cage may have a cytoprotective function, preventing movement of viral 

components outside the viral factories and into the cytoplasm, and concentrating late structural 

proteins at the virus assembly site (Stephanovic et al., 2005). These sites are full of partial 

membrane structures, from one to six faces of the hexagons that prefigure the virus shape and are 

the first morphological evidences of the virion assembly. In addition, all intermediate forms of the 

pre-virus are observed up to the fully neo-formed virus (Rouillier et al., 1998). 
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The intracellular virus particles are formed by a core surrounded by two successive layers: an inner 

envelope and an outer capsid. The VP72 (B646L) is the major structural protein of the outer capsid. 

The repression of VP72 leads to the accumulation of zip structures (Garcia-Escudero et al., 1997). 

These zip structures consist of double envelopes derived from the endoplasmic reticulum (ER). 

They are assembled by the constitution of one or two protein layers made of the late polyproteins 

pp220 and pp62 (Andrés et al., 1997, 1998 and 2002). They can move from the virus factory to the 

plasma membrane and egress by budding (Epifano et al., 2006). When not repressed, the VP72 

(B646) protein accumulates on the external face of the ER double envelopes and triggers the folding 

of the virus icosahedral capsid (Andres et al., 1997). The VP72 assembly requires the presence of 

the B602L chaperone protein (Cobbold et al., 2001). The icosahedral form of the capsid is not only 

due to the VP72 protein (B646L) but also the pB438L protein which repression leads to the 

formation of filamentous particles (Epifano et al., 2006). The inner virus envelope derives from 

fragments of scratched cysternae of ER. These fragments are then recruited in the virus factories 

where they acquired the outer VP72-capsid (Andrés et al., 1998). The translocation of these 

fragments into the viral factories would be endorsed by the interaction of the p54 protein (E183L) 

with the cell microtubule network via the light chain of dynein LC8 (Alonso et al., 2001, Rodriguez 

et al, 2004). The virus core maturation, including the incorporation of the virus genome, occurs 

concomitantly to the capsid assembly (Andrés et al., 1997). The assembly of the virus core depends 

on the viral cystein proteinase pS273R (Alejo et al., 2003). This protein cleaves the polyproteins 

pp220 and pp62. The resulting 6 major structural proteins p150, p37, p34 and p14 (deriving from 

the pp220) and p35 and p15 (deriving from pp62) form the core shell, between the viral DNA-

containing nucleoid and the inner virus envelope (Andrés et al., 2002). It is also suspected that the 

polyprotein pp220 mediates the assembly of the nucleoprotein during the late stages of the virus 

morphogenesis, during the virus particle closure (Andrés et al., 1997).  

 

Virus budding and egress 
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The neo-formed virions do not have necessarily to be transported for cell egress since the cell death 

by apoptosis and necrosis allow the destruction of the cell envelope and the release of the virus 

particles. However, after assembly, the mature virions are normally transported from the virus 

factories to the plasma membrane (Arzuza et al., 1992). Basically the intra-cellular material 

movement towards the microtubule organizing centre (MTOC) is done using the dynein-dynactin 

complex (Vale, 2003). The virus factories where the ASFV morphogenesis occurs are located close 

to these MTOC (Heath et al., 2001), and mature virus particles are found aligned all along the 

microtubules. This network is responsible for the virus translocation from the perinuclear sites to 

the cell plasma membrane (Carvalho et al., 1988; Hernaez, 2006). It was demonstrated that the p54 

protein has a LC8 dynein binding motif in the C-terminal part of the protein, from amino acid Y149 

to T161. LC8 dynein has a role in the motor protein multicomplex generating minus-end directed 

movement along the microtubule (King et al., 1996). The cell cytoplasmic LC8 monopolization by 

the ASFV p54 possibly alters the binding of dynein to cellular targets, promoting the virus 

transport. Thus the translocation of the virus particles in the two directions, meaning minus-end 

directed or centripetal transport depends on dynein motor activity (Alonso et al., 2001). The virus 

movement involves a conventional kinesin which is recruited to both virus factories and virions. 

This is consistent with the fact that an overexpression of the cargo-binding domain of the kinesin 

light chain severely affects the movement of the particles to the plasma membrane (Jouvenet et al., 

2004). The mechanism whereby the virus bounds the kinesin remains to be elucidated, in particular 

the identification of the viral proteins involved in this process. In spite of experimental evidence the 

kinesin could attach the virus through an interaction with the viral protein EP120R. This protein, 

also named p14.5, has been previously described as a structural protein expressed later after 

infection (Martinez-Pomares, 1997) and has been shown to be post-translationally modified by 

acetylation which releases a kinesin binding site (Alfonso et al., 2004). The use of a recombinant 

virus in which the EP120R gene was placed under the control of an inducible promoter 

demonstrated that this protein was localized at the surface of the intracellular virions in interaction 

with the major capsid protein VP72 (B646L). Repression of the inducible promoter inhibited the 

transport of virus particles to the plasma membrane. However, if the EP120R protein is clearly 
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required for the intracellular transport of the virus, surprisingly its absence does not affect the 

infectivity of the virus (Andrés et al., 2001). Infection by ASFV affects the cellular microtubule 

network increasing the virus protein acetylation as well as preventing depolymerisation and 

improving stability (Jouvenet et al., 2004).  

 

As previously mentioned, budding through the cell membrane is not essential for the acquisition of 

virus infectivity. Indeed, the mature intra-cellular virions are infectious and only acquire an outer 

envelope by budding. It has been observed that the intra-cellular virions are localized close to the 

inner face of the macrophage cell membrane. In addition, extra-cellular virus particles bind directly 

to the red blood cells (RBC) (Dixon et al., 2004). This property is due to the expression of the 

EP402R gene that encodes a viral analogue of the lymphocyte marker CD2. This analogue interacts 

with a lectin found on the red blood cell membrane and this interaction may play a role in the virus 

budding, attachment to RBC and virus spread in the peripheral blood. 

 

2.4. VIRUS RESISTANCE-PERSISTANCE 

ASFV is a very robust virus and its surprising stability was established for several different isolates. 

The virus persistence in EMEM medium or serum was shown to be: 

- 6 years at 5°C in the dark  

- 18 months in serum at room temperature 

- up to one month at 37°C 

- 3h1/2 at 56°C (notice that a serum is normally safely sterilised after 30 minutes at 60°C). 

 

ASFV is resistant to pH changes that occur during meat maturation. Basically the virus is most 

stable between pH 4 to 10. But depending on the presence of organic material, virus infectivity can 

be still demonstrated in serum after 22h, 3 days and one week at pH 3.1, pH 3.9 and pH 13.4, 

respectively. In addition, the virus can resist 15 weeks in putrefied blood, 11 days in faeces held at 

room temperature, 18 months in pig blood at 4°C, 150 days in boned meat at 4°C and 140 days in 

salted dried hams. It was also reported that ASFV persisted for 150 days at 4°C and for 104 days at 

-4°C in skeletal muscle and for 6 months in bone marrow at -4°C (Kowalenko et al., 1965). 
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ASFV virus titres were determined in meat samples from infected pigs (Table 1). 

 

Table 1: Recovery of ASFV in meat samples from four experimentally infected pigs by animal 

inoculation.from McKercher at al., 1978 

Product Days after slaughter 

Titre (heamadsorbing 

units 50% (Had50) per g 

(lower value     upper 

values) 

Whole meat 2 10 
3.25

 10 
3.75

 

Ground meat 2 10 
3.25

 10 
3.75

 

Salami 3 10 
2.0

 10 
2.5

 

Salami sausage 9 10 
-1

  

Pepperoni 3 10 
3.0

 10 
3.25

 

Brined ham 2 10 
2.5

 10 
3.75

 

 

In other experiments on ASFV persistence in pork products, the results of virus persistence were: 

- 140 days in Iberian and white Serrano hams (Mebus et al., 1993). 

- 399 days in Parma ham (McKercher et al., 1987). 

- 112 days in Iberian pork loins (Mebus et al., 1993). 

 

Persistence of ASFV in meat products have been detailed by the determination ASFV virus titres in 

65 pig tissues 5 days after experimental infection (Table 2) (Farez and Morley, 1997).  

 

Table 2: ASFV loadings in an infected pig and tissues expressed in HAD50 titres. The total loadings 

for each of the porcine tissues are calculated and the total infectivity in a carcass is estimated at 1.8 

x 10
13

 HAD50 units. Assuming bone marrow accounts for 10% of the carcass weight, then the 
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infectivity in bone marrow accounts for 96% of the total carcass infectivity. A “deboned” carcass 

thus contains 6.4 x 10
11

 HAD50 units (Farez and Morley, 1997). 

 

Tissue Weight (kg) HAD50 /g or /ml Total loading in pig 

(HAD50) 

Flare fat 1.00 10
5.4 

2.5 x 10
8 

Kidneys 0.26   

Feet 2.00  0 

Head, tongue 5.00  0 

Gut contents 8.40  0 

Intestinal fat 0.84 10
5.4

 2.1 x 10
8
 

Caul fat 0.11 10
5.4

 2.7 x 10
7
 

Intestines 2.70  0 

Stomach (maw) 0.55  0 

Heart 0.26 10
5.6

 1 x 10
9
 

Lungs 0.90  0 

Trachea 0.04  0 

Heart, lungs, trachea 1.20  0 

Liver, gall bladder 1.50   

Pancreas 0.06  0 

Spleen 0.11  0 

Blood drained from 

carcass 

3.40 10
7.9

 
d
2.7 x 10

11
 

Cerebro-spinal fluid   0 

Skirt 0.35  0 

Hair scrapings & 

hooves 

0.84  0 

Bladder 0.04  0 
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Reproductive organs 0.15  0 

Lymph nodes 0.04
c 

10
8.5

 1.3 x 10
10 

Waste 0.75  0 

Bone marrow 5.464
a 

10
9.5

 1.7 x 10
13

 

Skeletal muscle 43.712
b 

10
8.6

 1.3 x 10
11

 

Blood in muscle 5.464
a 

10
7.9

 4.3 x 10
11

 

Total (bone-in) (62.0)  
d
1.8 x 10

13
 

Total (bone-out) (56.6)  
d
6.4 x 10

11
 

a
assumes 10% of carcass weight (54.64 kg) 

b
assumes 80% of carcass weight (54.64 kg) 

c
value for sheep 

d
model assumes only 5% of high titre blood remains in the carcass (e.g. in blood clots) 

To be free of living infectious virus, ham produced from infected animals should be heated more 

than 3 hours at 69°C or 30 minutes at 70-75°C. Smoked and spiced sausages as well as air-dried 

hams required smoking to 32-49°C up to 12h and 25-30 days of drying process (Plowright et al., 

1994). 

 

In pig faeces, it was reported that ASFV could persist over 60 to 100 days (Muller, 1973, cited by 

Hass et al., 1995). More recently, pig slurries experimentally infected with ASFV were shown to 

retain infectivity for at least 15 minutes at 50 and 53°C but were inactivated after 30 minutes 

(Turner and Williams, 1999). 

 

Glutaraldehyde 0.2% in a 1:100 (wt/vol) ratio in heart tissue inactivated ASFV after 11 days of 

exposure at 22 to 26°C (Cunliffe et al., 1979). In another study, the effects on virus survival, of 

chlorine, iodine and quaternary ammonium in disinfectants were investigated. It was determined 

that chlorine was effective at concentrations of 0.03% to 0.0075%, with a dose response, iodine at 

concentrations of 0.015% to 0.0075% but without a dose response and quaternary ammonium 

compound was very effective at low concentration such as 0.003% (Shirai et al., 1999). The virus is 
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also very sensitive to lipid solvents and detergents, as well as oxidising agents like hypochlorite and 

phenol. More over, beta-propiolactone, acetyl-ethyleneimine and glycidaldehyde inactivate the 

virus within one hour at 37°C. Formalin (0.5%) requires 4 days. However, the virus was found to be 

resistant to proteases such as trypsin or pepsin and to nucleases. (Bengis 1997; Farez and Morley, 

1997; Plowright and Parker, 1967; Plowright et al., 1994). 
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3. PATHOBIOLOGY  

 

3.1. PATHOGENESIS  

 

Several studies on the ASF acute infection of pigs have shown that the route of viral penetration is 

usually via the tonsils or dorsal pharyngeal mucosa to the mandibular or retropharyngeal lymph 

nodes, from where the virus spreads through viremia. Occasionally, bronchial, gastrohepatic or 

mesenteric lymph nodes have been shown to be the first targets of infection following natural or 

airborne exposure (Plowright et al.1994). Following initial infection and replication of lymphoid 

organs, virus spreads through blood and in acute cases viremia may reach 10
8 

HAD50/ml. In disease 

caused by hemadsorbing isolates the virus in blood associates to erythrocytes which contain more 

than 90% of circulating virus although it is also associated with lymphocytes and neutrophils 

(Plowright et al 1994). Initial studies on the pathogenesis of ASF in newborn pigs show that 

primary viremia is identified as early as at 8 hours post-infection and secondary viremia between 

15
th

 and 24
th

 hours post infection. Spleen, body lymph nodes, liver, and lungs were shown the sites 

of the secondary viral growth. At 30 hours, all tissues of the newborn pigs contained some virus, 

and maximal titers were reached as early as the 72 hours post-inoculation (Colgrove et al. 1969). 

 

ASFV replicates primarily in monocytes and macrophages of the mononuclear phagocytic system 

that are the main targets for viral replication in vivo   (Malmquist W.A. and Hay, D., 1960; 

Heuschele et al. 1966; Heushele, 1967; Colgrove, 1968; Colgrove et al. 1969; Pan, 1987; Fernandez 

et al., 1992 a, b; Moura Nunes et al., 1983; Oura et al., 1998b). However different authors show 

that ASFV infects also megakaryocytic (Colgrove et al., 1969, Edwards et al., 1985b); endothelial 

cells (Wilkinson and Wardley, 1978; Sierra et al. 1989; Gomez-Villamandos et al. 1995 a, b, c,), 

glomerulus‟s mesangial cells (Pan I, 1987) and epithelial cells of collector kidney tubes  (Gomez- 

Villamandos et al., 1995a), hepatocytes (Colgrove et al., 1969; Sierra et al., 1987;  Gomez- 

Villamandos et al., 1995d), thymus reticulum-epithelial cells (Pan I, 1987), fibroblasts and smooth 

muscle cells of venules and arterioles (Gomez-Villamandos et al 1995a), neutrophils (Colgrove 
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1968, Colgrove et al 1969; Carrasco et al 1996b) and lymphocytes (Colgrove 1968; Colgrove et 

al.1969;Carrasco et al. 1966a) although viral replication in this case has not been demonstrated 

(Carrasco et al 1966a). Infection of such a broad range of host cells is not accepted by different 

authors and in some of those cases, cells render infected only in advanced stages of pig infection 

which suggests they become susceptible for yet unknown reasons, during the evolution of infection 

thus depending from the initial infection of macrophages. Some authors have suggested the cause of 

haemorrhage to be associated with viral replication in the endothelial cells of the interstitial 

capillaries (Sierra et al., 1989). This hypothesis has been refused by others (Gomez-Villamandos 

1995b, Carrasco et al. 1997b) who have demonstrated kidney and lymphnode haemorrhages prior to 

the observation of viral replication in those cells. However coinciding with those haemorrhages the 

authors have identified endothelial damage consisting with proliferation of lysosomes and 

phagocytized cell debris, increased capillary fenestration and even necrosis and loss of endothelial 

cells which resulted in exposure of the capillary basement membrane, to which platelets were 

attached (Gomez-Villamandos et al 1995b). This may be one of the causes of the disseminated 

intravascular coagulation (DIC) characteristic of ASF (Villeda et al., 1993,a,b), which other authors 

relate to the effect on endothelial cells of mediators, including prostaglandin E2, secreted by the 

infected macrophages that result in the activation of the clotting cascade and disseminated 

intravascular coagulation (Anderson et al., 1987) and others suggest this phenomenon may be 

related  to the release of cytokines by infected macrophages, namely to IL-1 and TNF-α  (Gomez-

Villamandos et al., 2003). 

 

Thrombocytopenia is generally observed in the final phase of acute forms of disease, after 

haemorrhages are detected and often goes undetected due to the sudden worsening of the affected 

animals and it has been attributed to consumption of platelets due to coagulopathy (Villeda et al., 

1993 a,b), to the direct effect of the virus on megakaryocytes (Gomez-Villamandos et al., 2003) and 

to various immune-mediated process involving immune complexes of ASF antigens and antibodies 

that cause aggregation of platelets (Edwards et al, 1985a). Nowadays it is generally accepted that 

the massive destruction of macrophages plays a major role in the impaired haemostasis due to the 
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release of active substances including cytokines, complement factors and arachidonic acid 

metabolites (Penrith et al., 2004)   

  

Pigs infected with ASF generally suffer severe lymphopenia which occurs suddenly during the 

initial-middle phase of the disease (De Tray et al, 1957). Lymphopenia is attributed to apoptosis of 

lymphocytes initially suggested by different authors who described morphological features of such 

death mechanism in spleen of pigs with acute ASF (Konno et al., 1971; Minguez et al. 1988).) On 

the basis of EM observations in tissues from pigs infected with different virulent isolates, apoptosis 

has been observed in uninfected lymphocytes in lymph nodes and in the renal and hepatic 

interstitium kidney and liver tissues (Carrasco et al., 1996; Gomez-Villamandos et al., 1995a; 

Ramiro-Ibanez et al., 1996; Salguero et al., 2002, 2005, 2008) 

 

Different pathogenic mechanisms have been proposed to explain the programmed cell death of 

lymphocytes during infection. As shown by others (Carrasco et al., 1996a), replication of ASFV as 

a cause of apoptosis in lymphocytes is ruled out because ASFV may infect but it does not replicate 

in them. More recently, production of pro-inflammatory cytokines by infected macrophages is 

strongly pointed to induce apoptosis on lymphocyte populations (Oura et al., 1998; Salguero et al., 

2002, 2005). 

 

Pathogenesis of ASFV chronic infections is not well characterized.  Different authors suggest that 

these forms of disease have an auto-immune component and lesions migh result from the deposition 

of immune-complexes in tissues such as kidneys, lungs and skin with their subsequent binding to 

complement (Plowright et al., 1994).            

 

3.2. CLINICAL SIGNS OF THE DISEASE 

 

Distinct ASFV isolates have been reported to induce a range of syndromes varying from peracute to 

chronic disease, and apparently healthy virus carriers, in parallel with distinct lesions, (Martins and 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 29 
 

Leitão, 1994). The more virulent isolates produce peracute or acute haemorrhagic disease, less 

virulent isolates produce mild clinical signs which can be readily confused with many other 

conditions in pigs, namely with classical swine fever and  in some instances, low virulent isolates 

produce mainly subclinical and nonhaemorrhagic infection and seroconversion. The incubation 

period varies from 3-15 days, followed by the development of one or more of the following forms 

of disease (Plowright et al., 1994; Penrith et al., 2004),  

 

Peracute   

Infection with highly virulent virus isolates can result in some pigs being suddenly found dead, or 

close to death. 

 

Acute (caused by highly virulent isolates) 

 Fever (40.5-42°C)  

 Early leucopaenia and thrombocytopaenia (48-72 hours)  

 Reddening of the skin (white pigs) - tips of ears, tail, distal extremities, ventral areas 

of chest and abdomen  

 Anorexia, listlessness, cyanosis and incoordination within 24-48 hours before death  

 Increased pulse and respiratory rate  

 Vomiting, diarrhoea (sometimes bloody) and eye discharges may exist  

 Death within 6-13 days, or up to 20 days  

 Abortion may occur in pregnant sow  

 Survivors are virus carriers for life  

 In domestic swine, the mortality rate often approaches 100%  

 

Subacute (caused by moderately virulent virus) 

Clinical signs resemble those of hog cholera,  

 Irregular remitent fever for up one month, followed in most cases by recovery  

 Duration of illness up to 30 - 45 days  
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 Anorexia and loss of condition 

 Caughing and dyspnoea specially on exercise 

 Death on forced exercise due to heart conditions 

 Abortion in pregnant sows  

 Death within 15-45 days 

 Mortality rate is lower (e.g. 30-70%, varies widely)  

 

Chronic (Caused by low virulent isolates) 

 Various signs: loss of weight, growth retardation of growing pigs which have a long 

hairy coat,  irregular peaks of temperature, respiratory signs 

 Lameness caused by arthritis that can also become necrotic  

 Animals are vulnerable to secondary infections and pneumonia  

 Develops over 2-5 months  

 Low mortality (less than 30%)  

 

3.3. LESIONS  

 

Gross lesions caused by ASFV infection depend on the form of the disease and ultimately on the 

virulence of the causative isolate. They can be summarized as follows:  

 

Lesions of peracute forms of disease (Plowright et al., 1994; Penrith et al., 2004) 

 Pigs that dye peracutely often do so before either clinical signs or lesions develop. However 

there may be a degree of skin flushing of extremities and the ventral abdomen in white-

skinned pigs and a general congestion of organs, with some fluid exudation into body 

cavities and possibly fibrin strands on organ surfaces. 

 

Lesions of acute forms of disease (Plowright et al., 1994; Penrith et al., 2004) 

(not all lesions are seen; this depends on the isolate) 
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 Marked reddening to purplish cyanosis of the extremities and the ventral surface in 

white-skinned pigs 

 Oedematous areas of cyanosis in hairless parts  

 Cutaneous echymoses on the legs and abdomen  

 Mucosal (ocular, oral, genital) congestion and hemorragae  

 Tear marks with mucopurulent ocular exudation 

 Mucopurulent nasal discharge and bloody froth at the nostrils 

 At necropsy, accumulation of straw-coloured blood fluid in body cavities (pleural, 

pericardial and/or peritoneal) and widespread haemorrhage in organs and on parietal 

surfaces 

 Petechiae in the mucous membranes of the larynx and bladder, and on visceral 

surfaces of organs 

 Congestive splenomegaly. Infarcts are occasionally evident at the margins  

 Petechial haemorrhages of the renal cortex, also in medulla and pelvis of kidneys  

 Oedema in the mesenteric structures of the colon and adjacent to the gall bladder; 

also wall of gall bladder 

 Lymphnodes, in particular those of the head and the gastrointestinal tract (the 

hepatogastric and mesenteric lymphnodes) are markedly swollen and hemorrhagic, 

sometimes resembling blood clots 

 Lungs do not collapse when opening the thoracic cavity, are usually congested to 

hemorrhagic. Inrterlobular septa are prominent due to accumulation of fluid. On cut 

surface there is exudation of fluid and froth, and the trachea is usually filled with 

froth which may be blood-stained 

 Gastrointestinal tract may appear normal to severely congested and haemorrhages are 

usually present in the gastric mucosa. Contents of the intestines are generally scant, 

fluid and sometimes blood-stained, and the rectum may contain bloody fluid or 

faeces covered with blood mucus  
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Lesions of subacute forms of the disease (Plowright et al., 1994; Penrith et al., 2004) 

 

 Pneumonia is frequent and leads to serofibrinous pleuritis with pleural effusions and 

adhesions 

 Serofibrinous pericarditis and adhesions that may result in intermandibular oedema 

 Joint and tendon sheath effusions with oedema of periarticular tissues 

 Lymphnodes are enlarged and hemorrhagic to fibrous  

 

Lesions of Chronic Forms of the disease (Petisca et al., 1963; Penrith et al., 2004) 

 Skin:  

 -  Local or generalized varioliform skin eruptions generally desapearing shortly after onset 

or that may persist due to extension of necrosis and purulent fusion with epidermis, 

subcutaneous conjunctive or muscle tissues.   

 - Multiple abscess and sero-fibrinotic oedema localized in the groin areas, neck, teats which 

may progress to necrotic and purulent lesions. Skin lesions may heal. 

 Joints 

Purulent or serofibrinotic arthritis 

 Lungs and cardiac lesions 

- Intersticial pneumonia more common in the apical and cardiac lobes of lungs which may 

spread. Extension of initial lesions to the entire lung was frequently observed and 

characterized by read and grey hepatization of lobules which may develop well limited 

necrosis and further purulent lesions. Necrosis of lung tissue may develop from initial 

phase of lung lesions. 

- Fibrinosis pericarditis 

 Lymphnodes and Spleen 

-  Lymphnodes in particular those draining affected organs are enlarged with a 

homogeneous firm consistency. Haemorrages are not common and if developing they 

localizein peripheral areas. 
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-   Spleen may show varying lesions ranging from enlargement and haemorrhagic to normal 

size but with dispersed necrotic foci.   

 

Summary as provided by the authors: 

Pathogenesis mechanisms of infection by ASFV of different virulence are not yet well understood 

and pig immune responses against ASFV infection are complex. Antibodies per se do not protect 

against infection and more recent studies emphasize cellular and cellular based mechanisms as 

relevant for animal survival.   

 

 

 

Future research identified by the authors: 

Pig macrophages are the main targets for viral infection. Deeper characterization of viral 

interactions with these cells, and with the domestic pig as a natural host, using viral isolates well 

characterized at genome level (naturally obtained or experimentally manipulated) may open new 

insights for the manipulation of pig immune responses towards the stimulation of protective 

immune responses thus contributing to the development of efficient vaccines. 
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4. EPIDEMIOLOGY 

 

4.1 VERTEBRATE HOSTS 

ASF affects all members of the family Suidae. Wild African suids are considered the original 

vertebrate hosts of ASF virus in the wild. However, several species and subspecies of wild suids 

exist and their contribution to the epidemiology of the disease differs depending on the species, the 

geographic location and their potential contacts with domestic pigs.  

In East and Southern Africa, warthogs (Phacochoerus africanus) play a demonstrated role as 

reservoirs of the disease, in association with soft ticks (Ornithodoros spp.). Despite buhspigs 

(Potamochoerus) being able to transmit ASFV to domestic pigs by direct contact (Anderson et al. 

1998), very little information is available about their role as reservoir hosts in Africa and 

Madagascar. In Europe, wild boar (Sus scrofa) populations play some role in the maintenance of the 

disease and should be considered specifically in the conception of eradication strategies.  

Despite ASF‟s progressive expansion towards Asia through the Caucasus and the Indian Ocean, 

important gaps of information remain about what is the real role of those wild Suidae regarding the 

maintenance of ASFV in the wild and their possible transmission to domestic pigs. The different 

species of wild pigs known to play a role in the epidemiology of the disease are discussed and the 

main information gaps and priorities for research are highlighted.  

 

4.1.2. The Warthog (Phacochoerus africanus) 

Among all wild pigs in the world, the warthog has been considered the most significant ASF 

vertebrate maintenance host of ASF. The warthog lives throughout Africa south of the Sahara, 

except in deserts, high mountains and dense forests. It is the most common of the three African 

Suidae, and it is widespread in all types of grasslands and open woodlands. Two different species 

are distinguished: i) The common warthog (Phacocheorus africanus) extending over most of the 

grassland/savannah ecosystem of the continent, ii) The desert warthog (P. aethiopicus) is confined 

to a small area of north-east Africa from Kenya throughout Somalia, probably extending into the 

extreme south-east Ethiopia. Almost all available data on this specie (behaviour, ecology and 
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habitat preferences) are derived from field research conducted in East or Southern Africa 

(Vercammen and Mason 1993).  Population density ranges between 1 and 35 individuals per Km2. 

Water is a limiting factor and along with den holes is a major element of its home range (between 

0.5 and 3.5 Km2).  

 

Fig 5: Warthog distribution (Source: http://www.wild-about-you.com/GameWarthog.htm) 

 

They are predominantly grazers.They spend the night in aardvark (Orycteropus afer) dens where 

the female also builds the farrowing nest. Sounders typically number 5 or less, although groups of 5 

to 6 sows with offspring occasionally number up to 16 individuals. 

They are seasonal breeders, farrowing lasting between 160 and 172 days when the rainy season 

begins. In equatorial regions, breeding is not limited to particular months. Piglets remain in the 

burrow, six to seven weeks and begin grazing between 2-3 weeks of age.  Weaning takes place 

between 2 and 6 months of age, average litter size being 3 with a range of 1 – 7. Unlike other 

species of wild pigs, interbreeding with other suids has never been reported. 
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The warthog/Ornithodoros moubata cycle for ASFV 

ASF is maintained in Africa by a cycle of infection between warthogs and soft ticks from which is 

unlikely to be ever eliminated  The role of warthogs in the epidemiology of ASF is well described 

in the literature (Thomson 1985;Wilkinson 1988; Plowright et al. 1994). High infection rates occur 

in most warthog populations examined in East and Southern Africa although there are geographical 

differences regarding seroprevalence of ASF in warthog populations in those areas, even between 

geographically close locations (Wilkinson 1989). In Tanzania (Serengeti region) the prevalence of 

ASF antibodies was of 100%, while it was of 50% in Magadi (Heuschele and Coggins 1969).  A 

survey in Uganda (Queen Elisabeth National Park), reported a prevalence of 58% in animals from 4 

to 12 months, which decreased with age (Plowright 1981). In South Africa, ASF seroprevalence 

ranged from 90% to only 4% in very  close geographical locations within the same area (Penrith et 

al. 2004).  

Infected warthogs do not show signs of disease but considerable viral replication and viraemia 

occurs (Thomson 1980). Infection occurs basically in the burrows, where a strong symbiotic 

relation occurs with Argasid ticks. It characterizes by low levels of virus in the tissues, manly in the 

lymphatic system and low or undetectable levels of virus in blood (Plowright 1981). Young 

warthogs are born uninfected and become infected, when bitten by O. moubata in the burrow. They 

then develop a viraemia which lasts for 2 or three weeks. This is sufficient to infect, in turn, a 

proportion of ticks which feed on viraemic newborn warthogs (Thomson 1980).Viral particles in 

warthog blood rarely exceed 10
2
 HAD50/ml and progressively decrease thereafter. After this 

generalized phase of infection, the virus localizes in various superficial lymph nodes, with virus 

levels up to 10
6.6 

HAD50 and animals remain infected for life (Wilkinson 1989). The virus has a 

predilection for lymph nodes of the head (Plowright 1981). 

Horizontal or vertical transmission does not occur in the warthog and maintenance of the virus 

within warthog populations is dependent on the soft tick Ornithodoros moubata which inhabits 

warthog burrows (Thomson 1980; Plowright 1981). 

This warthog-O.moubata cycle is virtually limited to areas where Argasid ticks are distributed and 

has been described in most of South and East African countries (see Annex 1). Data on the 
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relationship between P. aethiopicus and O. moubata in the Somali ecosystem is suspected (Penrith 

et al. 2004), but has never been documented to date. 

Infestation of warthog burrows -even in areas where the Argasid ticks is present-, are variable in 

terms of the numbers and stages of ticks found and the proportion of burrows infested, which might 

depend on warthog activity on those burrows. 

Equally, in some areas in Central Kenya high seroprevalences of warthogs were observed but no 

Argasid ticks could be found in a sample of 118 burrows, suggesting that other forms of viral 

transmission might occur in those areas (Pierce 1974). 

In West Africa, the existence of such cycle has never been demonstrated, except for a single record 

of O. porcinus porcinus in a warthog burrow in Sierra Leone (Penrith et al. 2004). 

In Senegal for instance, it is likely that this relation does not occur since O. moubata is absent (Vial 

et al. 2007). That‟s probably also the reason why the circulation of ASF has never so far been 

demonstrated in warthogs outside Eastern and Southern Africa. Other ticks such as O. sonrai have 

been identified in rodent burrows in Senegal (Vial et al. 2006a) as being potential vectors of ASF 

(Vial et al. 2007). However, those could not be found in warthog burrows (Vial et al. 2006b) and it 

is unlikely that ASFV circulates among warthogs populations in West Africa (Taylor et al. 2007; 

Jori et al. 2007). This is just an example to illustrate that the warthog- O. moubata model cannot be 

extrapolated to the whole African continent. 

 

Direct transmission of ASFV 

Transmission from infected warthogs to domestic pigs has never been demonstrated (Thomson 

1980; Plowright 1981). Experimental infections showed that infected warthogs lymphatic tissues 

contain lower quantities of virus (ranging from 10
2.9 

HAD50 to 10
8 

HAD50) than those found in 

infected domestic pigs.  

 

Indirect transmission of ASFV 
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The main role in the transmission between warthogs and possibly from warthogs to pigs is played 

by Argasid ticks when pigs and warthogs are sharing the same grazing areas and pigs are bitten by 

infected soft ticks carried by warthogs. 

The hypothesis that domestic pigs can become infected by the ingestion of infected warthog tissues 

has never been supported by experimental data (Penrith et al. 2004). 

Pigs may also become infected after being bitten by soft ticks, brought to human settlements with 

warthog carcasses or by ingestion of infected soft ticks. This hypothesis seems more plausible since 

soft ticks have been in some occasions found on warthogs bodies, outside their burrows (Horak et 

al. 1983). 

 

4.1.2. The Genus Potamochoerus: The Bushpig (P. larvatus) and the Red river hog (P. 
porcus) 

The bushpig, Potamochoerus larvatus, and red river hog, P. porcus, are the two representatives of 

the Genus Potamochoerus. The red river hog (Potamochoerus porcus) is brighter in color, with a 

distinct white dorsal stripe and crest, long white whiskers and eartufts. It occurs only in West and 

Central Africa, from Senegal (Casamance region) in the extreme west, and east and south to eastern 

Democratic Republic of Congo. However, there has been an evident contraction in the west and 

extreme north of its range, due to human activity (overhunting and habitat destruction). 

 

Fig 6: Distribution of Potamochoerus porcus 

(Source: http://www.ultimateungulate.com/Artiodactyla/Potamochoerus_porcus.html)  
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The bushpig (Potamochoerus larvatus) is darker in color, often without the distinct white masks 

and long eartufts characteristic of P. porcus. It has a relatively wide range, extending from and 

south R.D. Congo in the west, to Eastern South Africa in the south and Madagascar.  In 

Madagascar, P. larvatus is considered as an invasive species suspected to have been introduced by 

local populations more than 2000 years ago, although the exact origin and date of arrival in the 

island remains unknown (Roger et al. 2001).  

Data on the distributions and taxonomic variations of both of these species are sketchy and 

imprecise and certainly need genetic studies to clarify the systematic and distribution limits of both 

species. 
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Fig 7: Distribution of Potamochoerus larvatus  

(Source: www.ultimateungulate.com/Artiodactyla/Potamochoerus_larvatus.html) 

 

 

Very few field studies have been conducted on either of these species. Most of the information 

comes from studies on P. larvatus in South Africa (Seydack 1990;Vercammen et al. 1993). The 

distribution of both subspecies is apparently limited by the continuous availability of food, water 

and cover (Vercammen et al. 1993). Both species live in small family groups usually comprising 4-

10 individuals. However in equatorial regions, groups of more than 30 individuals are reported for 

the red river hog, while such large herds are rare for P. larvatus. Usually, both species are sedentary 

and territorial.  

During periods of inactivity they shelter in dense vegetation, and they may construct bad weather 

nests during cold and wet spells. Average daily movement distances were found to be 3 km, ranging 

between 0.5 and 5.8 km in western South Africa (Seydack 1990).  

Density of Potamochoerus spp. in different parts of South Africa ranges between 0.35 to 0.5 

individuals/ Km
2
 but can go up to 3 inds/ Km

2
 in tropical forest regions. However, density 

estimations at a local level are missing in most of its distribution range. 
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A distinctive aspect of Potamochoerus spp. is its suspected hybridization with domestic pigs and 

wild boars (Sus scrofa). This phenomenon has been repeatedly reported in different parts of Africa 

(Vercammen et al. 1993;Kingdon 2003) and Madagascar (Jori, pers commnunication). However, 

evidence for such an intergeneric hybridization and the viability of those possible hybrids have 

never been demonstrated and scientifically described. The reports of Potamochoerus spp x domestic 

pigs hybrids are always of free ranging female pigs being mounted by buhspigs or red river hogs, 

since male domestic pigs are usually chased by male bushpigs. 

 

The bushpigs and ASFV 

It is believed that bushpigs are less important than warthogs in the epidemiology of ASF, since they 

exist in lower numbers, are more evenly distributed and have lower infection rates (Wilkinson 

1988). Despite knowing that they can get infected, there is no information available on the levels of 

prevalence of ASFV in buhspigs. Mansveld estimated that ASF virus in bushpigs was 10 times less 

frequent in warthogs (Mansvelt 1963). De Tray (1969) reported “low frequencies” of the virus in 

Kenya (De Tray 2008), but without supporting figures. 

Information on prevalence of ASF in bushpigs is scarce (Haresnape et al. 1985; Jori et al. 2007; De 

Tray 2008). This is probably because bushpigs are elusive nocturnal creatures, difficult to capture. 

Nevertheless, it also suggests that this ASFV circulates only occasionally or at low levels (Jori et al. 

2007). 

In Madagascar, ASFV has never been detected in buhspigs since the introduction of the virus in this 

island in 1998. No major mortalities have ever been reported, despite the fact that when ASFV was 

introduced in 1998, it probably challenged a naïve population of Malagasy bushpigs. Moreover, 

occasional screening of bushpig samples for detection of ASFV antibodies through different 

methods always failed to demonstrate a possible contact with the virus (Jori et al. 2007). 

 

Both subspecies have been reported as being naturally infected with ASFV in East and West Africa. 

However, only very few reports of contacts between ASFV and buhspigs in Southern Africa or 
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Madagascar exist. Buhspigs show no clinical signs when infected with ASFV that are pathogenic to 

domestic pigs (Anderson et al. 1998). 

 

Infection in buhspigs results in low levels of viral replication and minimal pathological damage and 

apoptosis in lymphoid tissue, and low spread of the virus to other lymphoid tissues (Oura et al. 

1998)  recorded the duration of viraemia in bushpigs which lasted longer than in warthogs (35 to 91 

days) and showed that ASF virus persists in the lymphatic tissues for at least 34 weeks, following 

primary infection (Anderson et al. 1998) at levels that ranged between 10
2 

 and 10
4.9 

HAD50/ml (1).  

 

During viraemia, transmission between experimentally infected buhspigs and domestic pigs could 

be demonstrated but horizontal transmission between bushpigs did not occur, suggesting that those 

species require higher doses of virus to become infected. Surprisingly, infected pigs which excrete 

large quantities of virus were not able to transmit the virus to buhspigs, suggesting that this species 

may not be readily infected by direct contact. However, these hypotheses have never been 

confirmed further. Virus can be isolated from infected bushpigs up to 34 weeks after primary 

infection . 

 

Experimentally infected bushpigs were also able to infect soft ticks (O. moubata). However, in 

natural conditions, it is not likely that buhspigs maintain a close relation with soft ticks since they 

do not frequent burrows. Nevertheless, in areas of Africa where home ranges of  P. larvatus overlap 

with those of O. moubata and warthogs, contacts with ticks and bushpigs could eventually occur 

(Anderson et al. 1998; Roger et al. 2001). 

 

Despite the suspicion that bushpigs could play a significant role in the epidemiology of the disease 

(Haresnape et al. 1985; Roger et al. 2001), their epidemiological role remains unclear. However, 

outbreaks of ASF in domestic pigs have occurred in some areas of Malawi with presence of 

bushpigs and with absence of warthogs and soft ticks (Wilkinson 1984; Haresnape et al. 1985). As 
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buhspigs come close to communal lands attracted by crops, direct contact is possible if pigs are free 

ranging (Haresnape et al. 1985).  

 

In those situations, if pigs are infected and die in the bush, the possibility exists that Potamochoerus 

can become infected by ingesting pig carcasses. Equally, buhspigs are favoured game and there are 

sufficient ASFV particles in infected buhspig tissues (Anderson et al. 1998), to infect domestic pigs 

by ingestion (Penrith et al. 2004).  

 

If the hypothesis of hybridization between domestic pigs and Potamochoerus spp. is plausible, the 

way these hybrids would behave regarding a possible exposure to ASFV requires further 

investigation. Indeed, since Potamocheorus is an asymptomatic carrier, one could hypothesize that 

hybrids could become asymptomatic carrier pigs which could disseminate the disease to more 

susceptible pigs. 

 

4.1.3. The Giant forest hog (Hylochoerus meinertzhangeni) 

The giant forest hog (Hylochoerus meinertzhangeni) lives in mountain forests and adjacent 

grasslands below 3750 meters / 12,000 feet above sea level across Central Africa (d'Huart 2008). It  

has only been recorded in one instance as being infected by ASFV (Montgomery 1921). Since the 

distribution of this species is restricted to areas of dense forest (d'Huart 2008), where domestic pig 

production is not common, its role in the epidemiology of ASF can be considered negligible. 

 

Fig 8: Distribution of the Giant Forest Hog 
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(Source:www.ultimateungulate.com/Artiodactyla/Hylochoerus_meinertzhageni.html)

 

 

4.1.4. Feral pigs and wild boars (Sus scrofa) 

The Eurasian wild pig has one of the widest distributions of all terrestrial mammals and its range 

has been greatly expanded by human agency (Oliver et al. 1993). It is the ancestor of most of 

common domestic pigs. The wild boar in Africa occurs only in the North of the continent (Morocco 

and Tunisia). It has also been introduced in numerous African countries for hunting purposes such 

as South Africa, Sudan, Burkina Faso and Gabon. In the latter, the species is suspected to have 

interbred with Potamochoerus porcus (Vercammen et al. 1993).   
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Fig 9: Distribution of Sus scrofa  

(Source: http://www.ultimateungulate.com/Artiodactyla/Sus_scrofa.html) 

 

 

The feral pig is a domestic pig that is living in the wild, either having been released or escaped from 

confinement. It has been introduced by colonisation in many countries of the New World and many 

Islands in the Caribbean, the Indian Ocean and the Pacific. 

Basically, they are the same species as the wild boar and are difficult to distinguish morphologically 

although there are some differences. They are able to cross between each other and the hybrids are 

perfectly viable almost, if not wholly, indistinguishable from purebred Eurasian wild boars (Safari 

Club International, 2006) 

 

Sus scrofa and ASFV 

 

ASF has been introduced in many areas where Sus scrofa is present such as Spain and Portugal 

(Arias and Sanchez-Vizcaino 2002a), Sardinia (Laddomada et al. 1994; Mannelli et al. 1997; 

Mannelli et al. 1998), Cuba (Siméon-Negrin and Frias-Lepoureau 2002), Mauritius and more 

recently several countries in the Caucasus (Laddomada et al. 1994; Mannelli et al. 1997; Beltran 

Alcrudo et al. 2008). 

http://www.ultimateungulate.com/Artiodactyla/Sus_scrofa.html
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In the Iberian Peninsula, this species is highly susceptible to both natural and experimental infection 

(McVicar et al. 1981) and died massively after infection (McVicar et al. 1981; Laddomada et al. 

1994; Bech-Nielsen et al. 1995; Perez et al. 1998). Depending on the virulence of circulating 

strains, some animals survive and positive animals have been detected during serological surveys 

(Perez et al. 1998). In Florida, it was observed that feral pigs were extremely susceptible to ASFV 

isolates from Dominican Republic (McVicar et al. 1981). This seems to be also the case in 

Mauritius, where feral pigs in captivity that became infected died from the disease to the same 

extent as domestic pigs (Jori, personal communication).   

 

Their role in the epidemiology of the disease is unclear (Wilkinson 1989). In principle, they excrete 

viruses in the same quantities as domestic pigs and the epidemiological dynamic between wild 

boars and domestic pigs is very similar in terms of direct transmission between sick and susceptible 

animals (Arias and Sanchez-Vizcaino 2002a). However, they seem to be less efficient in 

transmitting the infection to co-specifics.  

 

In Spain, serological monitoring of wild boars during 1990‟s, showed seroprevalence levels lower 

than 0,5% suggesting that the disease was fatal in wild boars and that very few animals survived 

(Bech-Nielsen et al. 1995). However, several years later the number of seropositive animals 

increased and was maintained in areas where domestic pigs remained infected.  

 

4.2. INVERTEBRATE HOSTS 

ASFV is the only arbovirus that has a DNA genome. The only known invertebrate reservoirs of 

ASFV in nature are arthropods. Within the phylum Arthropoda, subphylum Chelicerata, class 

Arachnida, and its dominant subclass Acari, ticks are within the order Parasitiformes that also 

includes mites (Sonenshine, 1991). The suborder Ixodida (also called Metastigmata) comprises 

three families, the Nuttalliellidae and the Ixodidae (hard ticks) and Argasidae (soft ticks).  
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Two ticks of the family Argasidae have been identified as ASFV reservoirs in nature. In Europe the 

soft tick Ornithodoros erraticus was implicated as a vector of ASF virus for domestic pigs (Sanchez 

Botija, 1963) whilst in Africa Ornithodoros ticks of the Moubata  group  were found as an ASFV 

reservoir (Plowright, 1969). 

 

4.2.1. Tick-domestic pig interactions 

Ornithodoros ticks readily become infected while engorging on infected swine. Using experimental 

infections, Plowright (Parker, 1969) showed that clean ticks acquired virus when feeding on 

infected swine that have a viremia ranging from 10
6
 to 10

8
 HAD50/ml. As little as 10 to 10

2
 

HAD50/ml of some isolates was sufficient to infect ticks by feeding, but 10- to 100-fold more 

viruses were necessary to establish persistent infection in 50% of ticks. Other isolates required at 

least 10
5
 HAD50 to produce any persistent infection (Plowright, 1981). Concerning the involvement 

of Ornithodoros ticks in the domestic cycle, these results are compatible with virus kinetics 

monitored in susceptible pigs experimentally infected by ASFV isolates (Edwards, 1985; Ekue, 

1989; Greig, 1970). Conversely, concerning the role of Ornithodoros ticks in the parallel sylvatic 

cycle, these figures suggest that a viremia in warthogs of at least 10
3
-10

4
 HAD50/ml would be 

necessary to infect ticks, which has never been recorded in free living adult warthogs (Heuschele, 

1969; Parker, 1969). However, it is suggested that new-born animals may show even higher 

viraemia due to immunological immaturity and mostly contribute to the contamination of soft ticks 

because of their constant presence in burrows (Thomson, 1980). Adult warthogs, as well as other 

mammalian hosts of the tick, which are able to wander freely into areas used for domestic swine 

farming, may act as efficient transporters of infected ticks from wild areas to domestic ones and 

initiate ASF outbreaks at intervals up to many months later (Parker, 1969). Although bushpigs were 

demonstrated to be more efficient reservoirs for ASFV (Anderson, 1998; Luther, 2007; Oura, 

1998), they do not frequent burrows or caves that may be infested by Ornithodoros tick vectors; 

thus it is very unlikely that bushpigs contribute to the infection of tick vectors because of their low 

probability of contacts.  
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4.2.2 Tick-virus interactions 

4.2.2.1. Kinetics of AFSV in ticks 

Kleiboeker (Kleiboeker, 1998; Kleiboeker, 1999) experimentally infected different tick species of 

the O. moubata group with several virus isolates from Southern Africa and monitored the kinetics in 

ticks. Initial ASFV replication occurred in phagocytic digestive cells of the midgut epithelium with 

subsequent infection after 15 days. Generalization of virus infection from midgut to other tick 

tissues required 2 to 3 weeks and secondary sites of virus replication included hemocytes, 

connective tissue, coxal gland, salivary gland, and reproductive tissue; viral titers in salivary gland 

and reproductive tissue were consistently the highest detected with 10
4
 to 10

6
 HAD50/mg 

(Kleiboeker, 1998). In general, only low virus titres were found in field infected ticks: the highest 

titre was of 10
4.3

HAD50/tick (Basto, 2006; Boinas, 1995). In experimental studies with O. erraticus, 

ASFV infection rates generally decrease in orally infected ticks while in ticks inoculated with virus 

into the haemocoel it increases suggesting the existence of a gut barrier to infection (Boinas, 1995). 

Persistent infection, characterized by active virus replication in ticks, has been observed for several 

months to several years (Greig, 1972; Plowright, 1970). In the pioneer work of Sanchez Botija 

(1963) in Spain, ASFV was isolated from O. erraticus 4 months after an outbreak of the disease and 

later the author reported that the virus persisted in ticks for up to 8 years after infection (Sanchez 

Botija, 1982). Specimens infected with the ASFV isolates were collected from pig farms that were 

abandoned more than 2 years and 9 months after depopulation following an outbreak in Portugal 

(Boinas, 1995). Some ticks were removed from a farm 2 years after an ASF outbreak and kept 

unfed in the laboratory for 3 years before they were assayed and infectious virus recovered (Boinas, 

1995).  

The adult ticks and the larger nymphal stages are the most likely to be found infected in the field 

collections performed as time passes (Boinas, 1995). The proportion of virus isolations in these 

stages have an initial increase in time up to weeks 32 post outbreak while in the smaller stages it 

decreases in this period (Basto, 2006). Later in time the infection rates decreased in all stages 

(weeks 63 post outbreak). These field findings coincide with experimental studies that report a 

decrease in virus titres and infection rates at weeks 41 and 61 after experimental oral infection 

(Basto, 2006). The rate of decrease in virus infection rates in orally-infected ticks seems to be 
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dependent on the initial infection titre and so the probability of persistent infection in ticks depends on 

the titre of the viraemia of infected pig as only the highest titres used to infect ticks in some 

experiments led to persistent infection in ticks (Boinas, 1995).  

 

4.2.2.2. Prevalence of infection in tick populations 

In Malawi, infection rates of 1-3% were commonly reported in Ornithodoros ticks infesting pigpens 

(Haresnape, 1988), which was similar to rates reported for wild ticks inhabiting warthog burrows 

(Plowright, 1981); however, infection rates could reach 11-24% after an ASF outbreak occurring a 

few months ago (Haresnape, 1989). 

The reports of the prevalence of ASFV infection in O. erraticus populations in the field in Portugal 

are very diversified varying from 0.5-6.4% when the tick samples where collected up 1017 days 

after the ASF outbreaks or 43% when collected at the time of the outbreak of disease (Basto, 2006; 

Boinas, 1995).   

 

4.2.2.3. Specificity of ASFV to tick hosts 

Some authors consider ASFV and Ornithodoros tick as co-evolving organisms. Actually, noticeable 

telomeric similarities in the genomes of ASFV and Borrelia, the latter sharing the same 

Ornithodoros tick host in Africa and considered an original pathogen of soft ticks, suggest that 

ASFV is also a primary organism of Ornithodoros ticks and co-adapt to its tick hosts (Hinnebusch, 

1991). This hypothesis could explain discrepancies concerning infection success rates noticeable 

between several past surveys. For example, De Tray (1963) reported a consistent establishment of 

the virus isolate “Uganda” in Ornithodoros ticks of the O. moubata group (34/35 were infected) 

whereas another isolate “Tengani” only caused persistent infection in a small proportion of ticks 

(2/46 were infected). More recently, Kleiboeker (Kleiboeker, 1999) compared orally and intra-

hemocoelic experimental infections of Ornithodoros ticks collected from warthog burrows in 

Kruger National Park and the Northern Transvaal region of South Africa, as well as ticks from 

Masai Mara Reserve in Kenya, by three different viruses from South Africa, Malawi and 

Zimbabwe, all originally isolated from wild ticks. The oral infection conducted with the isolate 

from Malawi was abortive (decline of virus titers and number of ticks containing virus) while the 
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others persisted. Regarding the cythopathology caused by this isolate in infected ticks, the author 

suggested the non adaptation of the isolate to express specific genes which allow the production of 

large quantities of progeny virus without damaging the host cell. The reason why this virus was 

originally isolated from ticks could be the large opportunity for those ticks to feed on infected pigs 

with high viremic titers during an ASF outbreak and leakage of midgut contents into the hemocoel 

without tick mortality, instead of real adaptation of this virus isolate to the tick host (Kleiboeker, 

1999). In 1988, Dixon analysed genomes of ASFV isolates collected over a 2 year period from ticks 

inhabiting warthog burrows in four regions of Zambia and observed additional sequences in the 

region close to the left-end terminus of the genome, which are not observed in domestic pig isolates. 

The author concluded that virus replication in ticks and warthogs may require additional host-

specific genes not necessary for multiplication in domestic pigs and that the introduction of virus 

from tick/warthog sources into domestic pig populations would remove the selection pressure for 

maintaining these genes (Dixon, 1988). More recently, Burrage (2004) and Afonso (2004) 

demonstrated that ASFV multigene family 360 genes in the left variable region of the genome 

encode a host range determinant required for efficient replication and generalization of infection in 

pigs and ticks. However, no more information is yet available on specific determinants to 

tick/warthog hosts, as it was previously suggested. In addition, it is unknown if ASFV is able to 

come back from the domestic cycle to the sylvatic one although some authors suggest 

recombination processes during co-infections in ticks (Dixon, 1988 ; Plowright, 1976 ). 

 

4.2.2.4. Diversification of ASFV in tick hosts 

By sequencing the C-terminal end of the p72 gene, Bastos (2003) and Lubisi (2005) observed 

higher genetic variations in genotypes directly isolated from Ornithodoros ticks and warthogs or 

genotypes circulating in East and Southern Africa, where the sylvatic cycle plays a crucial part in 

the epidemiology of the ASF; some other genotypes were only found in domestic pigs and 

presented low genetic divergence (Lubisi, 2005). In Madagascar, using concatenated sequences of 

the p22 and p32 genes, Michaud (Michaud, 2007) detected relatively high genetic divergence 

between Malagasy virus isolates collected on domestic pigs from 1998 and 2003, compared to that 

observed on West African and European isolates since the 1970s. In Madagascar, it has been 
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suspected that the introduced virus was adapted to local bushpigs and Ornithodoros ticks, leading to 

its accelerated diversification. Such diversification phenomenon reported in several African 

countries has been previously analysed by Dixon (Dixon, 1988) on Zambian virus isolates from 

Ornithodoros ticks. A considerable genetic diversity was observed between virus isolates from ticks 

collected from same regions and even same warthog burrows; this diversity resulted from peculiar 

point mutations and was all along the length of the genome, instead of insertions/deletions in the 

region close to the left-hand terminus of the genome usually observed for host filter (Dixon, 1988). 

Regarding these results, ticks would be able to enhance the diversification of ASFV and the 

emergence of new virulent isolates to domestic pigs. However, no information is yet available on 

the location and the expression of genetic diversification. In addition, this process does not seem 

compatible with the persistence of ASFV in Iberian Ornithodoros ticks and observed genetic 

homogeneity of ASFV in Europe. 

 

4.2.3. Tick-tick ASFV transmission  

Transstadial transmission has been demonstrated by Hess (1989) who maintained laboratory 

colonies of Ornithodoros ticks from Zimbabwe that were already infected by ASFV and remained 

infected for at least 1 year; however no data are available on transmission rates between 

development stages.  

Sexual transmission has been proved with a Ugandan isolate in Ornithodoros ticks of the O. 

moubata group by Plowright (Plowright, 1974), with a male-to-female transmission rate of 87.6%; 

this finding may explain the 4- to 6-fold increase in infection prevalence between late nymphal 

stages and adults observed by Plowright (Plowright, 1974).  

Finally, transovarial transmission was also demonstrated by Plowright (Plowright, 1970) under field 

conditions on Ornithodoros ticks collected from warthog burrows in northern Tanzania, with a filial 

infection rate of 67-78%, and later by Rennie (Rennie, 2001) by laboratory experimental infections 

of O. moubata with a Zambian virus isolate originally collected from wild ticks, with a filial 

infection rate of 1.8-31.8%.  

Regarding such modes of transmission that allow ASFV to be maintained in ticks without 

horizontal transmission involving swine, as well as ASFV multiplication leading to its long-term 
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persistence in ticks that present an extreme long life-span of 5-10 years without feeding, it is quite 

reasonable to consider that African Ornithodoros ticks act as natural reservoirs for ASFV. 

However, some studies do not seem to confirm this hypothesis. Although experimental infections of 

Ornithodoros ticks with ASFV do not affect their oviposition rates, progeny hatching rates and 

feeding rates of nymphal stages and adults, significant increase of mortality rates have been 

observed by some authors, especially in females (Hess, 1989; Rennie, 2000). The authors proposed 

this process to explain the apparent clearance of ASFV from tick populations in the field, by a 

partial success of tick infection according to virus titres ingested and a higher mortality of infected 

ticks compared to uninfected ones in the same population (Hess, 1989). Because some other 

experimental infection studies did not point out same increase of mortality rates (Kleiboeker, 1998; 

Kleiboeker, 1999), these results should remain questionable. In Europe, only transtadial has been 

observed in O. erraticus (Sanchez-Vizcaino, 2006). 

 

4.2.4. Ecological and biological characteristics of tick hosts 

4.2.4.1. Development cycle 

All Ornithodoros species share common biological and ecological characteristics. Their life cycle is 

polyphasic (one host for each feeding stage) and is composed by one larval stage, several nymphal 

stages (from 2 to 9 according to species, feeding efficiency and climatic conditions), and one adult 

stage; the lifespan of this last stage may be extremely long reaching sometimes more than 5 years 

without feeding (Morel, 1969). Ornithodoros ticks commonly present two different morphologic 

types, the premature one and the adult one, both separated by a true metamorphosis (in opposition 

to nymphal moulting). Contrary to hard ticks, larvae are specifically more characteristic for 

morphological identification than nymphs and adults (Cooley, 1942). These ticks are 

hematophagous at all growing stages, apart from the larval stage of the O. moubata group that 

directly moult in nymphs without engorging (Walton, 1962). Each nymphal stage engorges once 

before moulting while adults may feed repeatedly on different hosts (1 to 10 blood meals). 

Copulation between males and females usually occur after feeding out of the host. Blood meal is 

necessary for pregnant females to lay eggs; the clutch size is generally low (from 20 to 300 eggs) 
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but several clutches (2 to 6) may be produced following one copulation provided that preliminary 

blood feeding (Encinas Grandes, 1993; Morel, 1969).  

The activity of the ticks depends on the conditions of temperature and humidity and the complete cycle 

can take only 154 days in laboratory conditions (el Shoura, 1987). In the field the activity of the tick 

varies with the season. In Europe, the tick is inactive in winter and activity starts when the minimal 

external temperatures are in the range 10-13
o
C (inside the pens 13-15

o
C) with peaks of activity attained 

in the warmest months. The complete cycle, from egg to adult male or female, after one larval stage 

and 3 to 5 nymphal stages, is 4 years in Spain (Fernandez Garcia, 1970) and is presumed to be between 

2-3 years in the Spanish province of Salamanca (Encinas Grandes, 1993 ; Oleaga-Perez, 1990 ) and in 

Portugal (Caiado, 1990 ). In subtropical regions, such seasonal patterns have not been observed and 

complete development cycle can be done in about 150 days (Walton, 1962). This tick has a 

remarkable resistance to fasting, as several reports refer to maximum periods between feeding of 3 

to 5 years (Fernandez Garcia, 1970; Oleaga-Perez, 1990; Boinas, 1995) and the estimated total 

period of life of up to 15 years (Encinas et al., 1999). 

 

4.2.4.2. Feeding activity and host preferences 

Ornithodoros ticks attach themselves to their hosts for blood feeding only for a short time, usually 

for less than one hour, except for larvae of some species that can stay 1-2 days on the same host 

(Morel, 1969). The multiplication of short parasitic periods in Ornithodoros ticks may have 

important impacts on their dynamics (predicted low dispersal capacities and low viability of 

restricted populations) and their parasitic functions (optimization and multiplication of blood 

feeding and relative host ubiquity).  

It may partly explain that O. porcinus is able to be associated either to several mammals like 

warthogs when living in wild areas and to humans, fowls or pigs when living in domestic buildings, 

all of these situations leading to the transmission of different pathogens like ASFV for pigs or 

TBRF for humans (Walton, 1962; Haresnape, 1986; Haresnape, 1988). Same situation is observed 

for O. erraticus colonizing North Africa and Southern Europe. It has been essentially found in 

rodent and insectivore burrows in Africa (Hoogstraal, 1954) while it mainly colonizes domesticated 

areas in Europe, essentially pigsties (Caiado, 1988; Oleaga-Perez, 1990). Pigs are considered as the 
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main host and other accidental/alternative hosts include humans, rodents, sheep and chickens 

(Tendeiro, 1962). In Portugal, engorged ticks were found in birds nests on infested premises and 

birds may also act as alternative hosts for the parasite (Boinas, 1995). These ticks were frequently 

associated with Borrelia hispanica infection of humans, which was a hazard of the management of 

pig sties (Carvalho Dias, 1933; Gil Collado, 1948). 

 

4.2.4.3. Endophilous status and microhabitat preferences 

Because of the peculiar composition of their oilskin, African Ornithodoros ticks and more generally 

Argasidae can adapt to drier external conditions (<20%) and higher critical temperatures (63°C for 

O. moubata) than hard-body ticks, which explains their widely geographical distribution in African 

sub-Saharan countries (xerophilic type) (Morel, 1969). However, the absence of hard shell on soft-

body ticks constraints their development and life cycle. Except O. savignyi that lives at ground level 

and is widely distributed in sub-Saharan desert areas thanks to a particularly high critical 

temperature up to 75°C, all Ornithodoros ticks colonize underground or protected habitats 

(endophilic type); such habitats damp out external climatic variations and delay the influence of the 

climate on the internal microclimate (Morel, 1969).  These parasites are classified as being 

endophilous and nidicolous since they live in the habitat of the host (Sonenshine, 1993). 

Consequently, those ticks are mainly found in burrows of small mammals and other vertebrates, 

dugouts and trenches infested with wild animals, caves especially those in which guano is present, 

litters or nests  (Morel, 1969; Rodhain, 1976). Some species could adapt to domestic conditions and 

thus have been found in henhouses, cowshed or small ruminant buildings, pigsties and human 

dwellings with mud walls and floor (Walton, 1962; Rodhain, 1976).  

All these different underground habitats provide optimal temperature and humidity necessary for 

the survival and development cycle of Ornithodoros ticks. As a consequence, it is reasonable to 

consider that habitat preference may constitute more important factors than host selection for 

Ornithodoros ticks, leading to their apparent host ubiquity. Studying distribution patterns of O. p. 

domesticus in human dwellings in East Africa, Walton (1962) noticed that ticks were either found in 

humid and cold highlands, humid and hot coasts and also in dry and hot lowlands. In the first area, 

ticks were found only in traditional buildings where the cooking fire was warming and drying the 
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soil. In the second and third areas, ticks were colonizing cracks where external climate was buffered 

to provide cool temperature and higher humidity. Regarding these results, Ornithodoros ticks 

depend in a certain limit of external climate but seem to be able to adapt to apparently unfavourable 

conditions by selecting underground habitats that may provide microclimatic optima. Hoogstraal 

(1954) observed the same patterns for O. sonrai in Egypt, which never colonizes dry pure sand 

burrows while it is found in same areas when sand-clay or silt-sand soils maintain a relative 

humidity from close rivers or annual rainfall. 

There are no reports that the Argasid can move itself outside the buildings or its burrow; it can only 

move when attached to the host. Spread can be explained either by the transfer of utensils 

contaminated with the parasite or by the passive transfer of Argasid feeding on animals being moved. 

This could only be responsible for transfer over short distances, since the time of feeding is generally 

short, 10 to 30 minutes (Fernandez Garcia, 1970), and possibly even shorter when the animal is in 

movement unless trapped in a skin fold, etc.  

 

4.2.5. Distribution patterns of tick hosts 

4.2.5.1. Distribution of Ornithodoros of the moubata group in Africa 

Before the 1960s, O. moubata was considered a unique species although numerous discrepancies 

were observed among field and laboratory investigations on biological and ecological 

characteristics, such as modes of hatching, feeding behaviors, preferences of microhabitat or 

optimum temperature and humidity. Studying differences in the ability of distinct geographic 

populations of O. moubata to withstand the effects of dessication, Walton (1962) proposed that O. 

moubata would be either composed of a number of biologically different populations and/or 

consisted of a number of distinct species. He recognized four distinct species in the O. moubata 

group (Walton, 1962; Walton, 1964 ; Walton, 1967 ): 

- O. apertus, a rare tick known only from two localities in Kenya and exclusively associated with 

African porcupines (Hystrix); 

- O. compactus, localized south of the Zambezi River and associated with several species of 

tortoises but never found in domestic areas; 
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- O. moubata sensu stricto, presenting a wide distribution in the xeric southern third of Africa, in 

South Africa with northward extensions through Mozambique to central Tanganyika in the east and 

through southwest Africa into Angola on the west. This species is commonly found in warthog and 

porcupine burrows but also presents a domestic form inhabiting human dwellings. Wild specimens 

of O. moubata are more robust and have more accentuated features than domestic forms, which 

may be a deme or a race of the wild species. As the known hosts of the later deme or race in African 

dwellings include man, dog and domestic fowl, Walton suggested that it was probably this deme 

which also infests domestic fowl houses in South Africa.  

- O. porcinus, also widely distributed in the humid Central African Plateau, from central Kenya to 

central Mozambique, west to the eastern borders of Ruanda Urundi and upland Nvasaland. O. 

porcinus is an abundant species in the bush, inhabiting warthog and porcupine burrows, hollow 

baobab trees and in lairs of large animals. It has also definitely been found several times on 

domestic cattle and on the giant scaly anteater. A domestic form also exists and inhabits 

preferentially human dwellings in East Africa. Morphological and biological differences between 

wild and domestic populations were so consistent that Walton warranted subspecific status for each 

and gave the name O. porcinus porcinus to the wild form and the name O. porcinus domesticus to 

the domestic form.  

Walton (1964) noticed that O. porcinus and O. moubata have broadly overlapping distributions in 

eastern Africa and have actually been found together in the same African hut in Mozambique, 

which explain much confusion on the taxonomy of these species.  

The systematics of O. porcinus is all the more complicated that its domestic subspecies O. p. 

domesticus presents also several biological and ecological forms. In East Africa, many of the 

regions occupied by O. p. domesticus are very decidedly wet and cold while others are both hot and 

wet or hot and seasonally dry. A number of local races have apparently evolved in adaptation to the 

different facets of the varied geographical pattern of Eastern Africa (Walton, 1962; Walton, 1964). 

Races inhabiting human dwellings at high altitudes in damp cool conditions show a marked 

preference to feeding on man. At lower altitudes, in hot climates with long dry periods, both man 

and domestic fowls are bitten with equal facility by a second race. Then, in hot moist conditions, 
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domestic fowls become the host of choice of a third race. In addition, as soon as 1906, Wellman 

(Wellman, 1906) reported the presence of Ornithodoros ticks from the O. moubata group inhabiting 

pigsties in Angola. This frequent association with domestic pigs was later confirmed by Wilson 

(Wilson, 1943) and Haresnape (Haresnape, 1986; Haresnape, 1988; Haresnape, 1989) in Malawi, 

Bedford (Bedford, 1934) in South Africa and very recently by Quembo in Mozambique (personal 

communication). Finally, in Madagascar, Uilenberg (Uilenberg, 1963) also highlighted some 

ambiguities with one race of the O. moubata group that has been found mainly in pigsties. These 

specimens presented a specific combination of O. p. porcinus-like and O. p. domesticus-like 

morphological characters that did not allow including this race in one category; only recent 

molecular analyses by sequencing the 16S rDNA gene demonstrated its close relationship with O. p. 

domesticus (Vial, personal communication). The concept of species and subspecies in the O. 

moubata group is all the more ambiguous that cross-breeding experiments do not give more 

comprehensive results. Artificial copulations between O. moubata ss and both subspecies of O. 

porcinus are difficult and relatively delayed but some of them succeed, which do not support the 

hypothesis of distinct species. However, the production of larvae is low (from 6% to 14%) and the 

corresponding nymphal stages have high rates of anomalies (from 62% to 100%) (Walton, 1962). 

Cross-breeding between O. p. domesticus and O. p. porcinus are highly fertile (from 71% to 91%) 

and most hybrids are viable, except when reproductive females are O. p. porcinus (60% compared 

to 0% when inverse pairing) (Walton, 1962). As a consequence, Walton‟s classification did not 

receive a consensual agreement from taxonomists, for example Van der Merwe, who considered 

structural differences of members of the O. moubata complex to merit only subspecific status and 

thus created the name “O. moubata porcinus”; however, this classification is commonly use to 

investigate vector competence of those ticks for animal or human diseases.  

Domestic forms of O. moubata (ZUMPT, 1961), as well as O. p. domesticus (Fukunaga, 2001 ; 

Walton, 1962 ), have been found naturally infected by B. duttoni causing human tick-borne 

relapsing fever in East and Southern Africa. Concerning wild ticks, specimens that were primarily 

collected as confirmed vectors of ASFV, mainly in warthog burrows from Kenya, Uganda and 

Tanzania, were all identified as O. p. porcinus (Pierce, 1974; Walton, 1979). However, to our 
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knowledge, no detailed information is available on the correct species, subspecies or race 

identification of Ornithodoros ticks transmitting ASFV from Southern Africa or East African 

countries located on the overlapping geographical ranges of O. moubata and O. porcinus, especially 

Mozambique. No specimen of the domestic form has so far been found in the bush but the wild 

form has been found repeatedly in the domestic environment, which may explain regular 

introductions of ASFV isolates from the sylvatic cycle to the domestic one and possible exchanges 

or cross-breeding between wild and domestic forms.  

 

4.2.5.2. Distribution of O. erraticus in the Iberian Peninsula and North/West Africa 

Same ambiguity also exists for the taxonomy of O. erraticus. The argasid ticks parasitic on pigs in 

the Iberian Peninsula belong to the genus Ornithodoros Koch (Oleaga Perez, 1989). This only existing 

species has been classified differently throughout the time with different species names. O. marocanus 

was used until 1930 (Gil Collado, 1948) and then O. erraticus by most of the authors from 1930 to 

1985 (Oleaga Perez, 1989). The parasite in Spain and Morocco was reported as O. marocanus (large 

form) by Hoogstraal (1985), who also grouped the ticks found in Northern Africa as O. erraticus 

(small form) and the ones found from Tunisia to Senegal as O. sonrai. Electrophoretic enzyme studies 

of the genetic distances between the several populations revealed differences between O. sonrai (from 

Senegal) and O. erraticus (from Egypt) although these species have almost no morphological 

differences (Wallis, 1983). Both species were found in Morocco in sympatry in same rodent burrows 

(Baltazard, 1950; Blanc, 1951). In addition, crossbreeding experiments conducted on O. sonrai and O. 

erraticus between pairs of distinct species and pairs of same species but coming from distinct 

geographic localities have showed same ranges of fecundity failure, suggesting the existence of 

numerous multiple strains of ticks (Chabaud, 1954). Actually, these strains may constitute a cline of 

species and explain the diversity of naming for Ornithodoros ticks in North and West Africa with its 

extension to Europe.  

In view of this confusion in classification, it was decided to use the name preferred by most of the 

authors- Ornithodoros erraticus - for the soft tick found in pig sties in the Iberian Peninsula. In the 

Iberian Peninsula O. erraticus has only been reported in the traditional type of pig herds of the 

Iberian/Alentejano extensive production system type. Distribution surveys using physical search or 
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CO2 traps (Caiado, 1990), reported the ticks in Spain in the provinces of Salamanca, Badajoz, Huelva  

and Caceres (Boinas, 1995; Encinas Grandes, 1993 ; Estrada-Pena, 2000) and in Portugal the 

distribution studies only identified the tick in the Southern Provinces of Alentejo (11 positive counties) 

(Caeiro, 1999) and Algarve (2 counties) (Boinas, 1995). Pigs were the only domestic animal species 

always present in the occupied infested premises in the surveys made in Portugal (Boinas, 1995). Ticks 

were only found in premises that were populated by pigs at present or in the past. Ticks were also 

found on farms that had certainly been empty for more than 5 years as confirmed by regular visits to 

the farms (Boinas, 1995).  

 

4.3. EPIDEMIOLOGICAL PATTERNS OF ASF 

4.3.1. ASF in Eastern Africa 

According to past field observations and recent genetic insights, the epizootiology of ASF is clearly 

divisible into three distinct parts (Scott, 1965; Lubisi, 2005; Boshoff, 2007): 

- The “old enzootic cycle” or “sylvatic cycle”  involving wild pigs, especially warthogs, and 

wild Ornithodoros ticks with accidental transfers to domestic pigs by ticks leading to 

sporadic outbreaks; 

- The “intermediate enzootic cycle” involving domestic pigs and domestic Ornithodoros 

ticks acting as vectors and reservoirs with regular contamination of domestic pigs; 

- The “new epizootic cycle” or “domestic cycle” restricted to domestic pigs and 

characterized mainly by direct transmission modes via pig movements and contacts, 

contaminated fomites or infected meat and leading to typical extensive outbreaks with rapid 

eradication by global slaughtering. As it has been observed in some European and West 

African countries, ASF may become “enzootic and domestic” if viruses adapt to domestic 

pigs and their feral descendants, which become the major carriers for ASFV through chronic 

or asymptomatic forms (Mebus, 1980). 

 

This classification should be considered only for the introduction process for the first time in a 

domestic pig herd whereas ASFV spread is then usually taken over by direct transmission modes 

from infected pigs to susceptible ones. Regarding this classification, it is possible to re-interpret past 
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epidemiological descriptions of ASF outbreaks in East and Southern Africa, in order to extract main 

information on their spatial and temporal dynamics. Such descriptions are actually rare because of 

the contagiousness of the disease and the difficulty to monitor outbreaks since their beginning. 

However, Heuschele (1965) and Pini (1975) gave details on ASF outbreaks related to the “old 

enzootic cycle” in Kenya and South Africa while Haresnape (Haresnape, 1986; Haresnape, 1988; 

Haresnape, 1989) provided a good description of ASF outbreaks caused by the “intermediate 

enzootic cycle” in Malawi. 

 

In Kenya, the outbreak monitored by Heuschele (1965) broke out in April 1964 in on a farm near 

Kitale. The authors were asked by Kenya Veterinary Department authorities to examine specimen 

materials from this outbreak for the presence of ASFV, as well as to collect additional samples. 

They also travelled to the farm to obtain a full history of the outbreak and other epizootiological 

data. In South Africa, Pini (Pini, 1975) firstly summarized the successive ASF outbreaks officially 

reported in the total country from 1926 to 1972 and then detailed 18 outbreaks occurring from May 

1973 to March 1974 in the controlled area in non approved piggeries that are allowed to keep pigs 

only for local consumption. Both studies described sporadic emergence of ASF (Kenya: emergence 

in 1964 after 6 years of silence since the latest 1958 outbreak; South Africa: 3 active periods of 

disease in 1926-1938, 1951-1962 and 1973-1974 and 2 silent periods of 11 and 10 years, 

respectively), suggesting the introduction of viruses in domestic pigs from an enzootic sylvatic 

cycle. Pini (Pini, 1975) could detail temporal and spatial dynamics of the 18 outbreaks monitored in 

1973-74 in South Africa and confirm the main wild source of infection. The outbreaks could 

apparently be grouped into 6 primary foci of infection. The first was reported on May 1973 on a 

farm in the eastern part of Letaba District. The origin of the infection was attributed to a warthog 

that was found and killed on the farm and the meat used for human consumption. The second case 

of disease occurred a month later on another farm in the same district approximately 35 km from 

the previous outbreak. The origin of this infection was not established but was not related to the first 

one because of the difference of hemadsorbing effect of both isolates. A third focus was recorded in 

Pietersburg District. The source of the infection was not traced but it was suggested that infection 
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came from meat scraps obtained from a local butcher who had probably purchased meat from 

infected farms. The fourth focus of infection occurred in September-October 1973 in the western 

part of Letaba Distric and reported outbreaks may all have been caused by movement of affected 

pig products. The fifth focus of disease was recorded in White River District in December 1973-

January 1974. All the farms affected were closed and wild pigs were found in the area. In the same 

time, investigation of ASF in the western Transvaal demonstrated that O. moubata infected by 

ASFV was present in the burrows used by the warthogs. In Kenya, same sources of first 

introduction are described by Heuschele (1965) although spread is then caused by contagious pigs. 

Several of concerned pig holders or pig keepers were actually found hunting wild pigs for food and 

their most recent known hunt occurred three months prior to the outbreak; investigations in the wild 

confirmed the natural infection of warthogs and their abundance near infected pig farms 

(Heuschele, 1965). All these observations are coherent with the probable genotypes causing these 

outbreaks. In Kenya, genotypes I and X, which have been isolated from pigs, ticks, warthogs and 

bushpigs, were both circulating during the described outbreak. In South Africa, genotype XX may 

be responsible of the 1973-74 outbreaks but no investigations could confirm its presence in wild 

pigs or ticks. Finally, as it is agreed for ASFV isolates originated from wild natural reservoirs, both 

authors reported a mortality rate of 100% in domestic pigs.  

 

In Malawi, Haresnape (1984) assessed the occurrence of ASF through detailed field surveys based 

on verbal enquiries and a questionnaire to pig owners in selected areas in the Central Region of 

Malawi since August 1981. It was clear that the number of cases of ASF confirmed in the 

laboratory during 1981 and 1982 represented a gross underestimate of the real incidence of the 

disease. Several outbreaks were reported in Dedza, Lilongwe, Mchinji, Dowa and Ntchisi districts, 

mostly from April to December 1981, whereas no outbreak was officially recorded in Northern and 

Southern Malawi during the same period. In Lilongwe, outbreaks were distributed through 3 

distinct foci, without any affected areas between these localised foci, suggesting that pigs were 

contaminated locally in their pigpens. Mortality rates of 86-100% were reported and several pigs 

with antibodies to ASFV have been found in the west of the district although there was no report of 
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any recent outbreaks in this area (Haresnape, 1984). Such results suggest that pigs which survive 

infection become inapparent carrier animals and may play a role as a local source of infection in 

Malawi. Furthermore, investigations on Ornithodoros tick presence in pigpens and houses, as well 

as their natural infection with ASFV, were conducted through a four-phase survey from 1982 to 

1985. Whereas ticks occurred over a wide area of Malawi, they colonized more likely houses than 

pigpens and the areas where ticks highly infested pigpens were almost exclusively located within 

the Central ASF enzootic zone (Haresnape, 1986). ASFV infected ticks were found in pigpens and 

houses from Mchinji district which is in the centre of the ASF enzootic area and no ticks were 

found infected outside this zone; in all villages where infected ticks were collected, deaths of pigs 

from ASF had been reported shortly beforehand (Haresnape, 1988). The overall infection rate was 

approximately 3% but was much higher (24%) just after an ASF outbreak; the proportion of 

infected ticks decreased with the passage of time but infected ticks were still present in all villages 

several months after outbreaks, which greatly suggest the role of domestic ticks as vectors and 

reservoirs (Haresnape, 1989). Finally, concerning wild areas, the unique warthog habitat in which 

ticks were found during the study was in Lilonde National Park in the Southern region of Malawi, 

which is well outside the ASF enzootic area; none of the ticks collected there were infected, 

although further south in Lengwe National Park, five of six warthog sera were seropositive for 

ASFV (Haresnape, 1988). At this period, only genotypes VIII and XII were circulating in Malawi 

(Lubisi, 2005); the first genotype was only isolated from domestic pigs and the second one from 

domestic pigs and Ornithodoros ticks, which also confirm a typical “intermediate enzootic cycle” 

involving only domestic pigs and domestic Ornithodoros ticks in Malawi in the 1980s. 

 

More recently, field investigations were conducted in 3 three different areas of Madagascar 

(Marovoay region in the North, Ambatondrazaka in the West and Arivonimamo region in the 

Centre near Tananarive), in order to assess the epidemiological factors explaining the enzootic 

persistence of the disease since its introduction in 1998. While 15-42% of ASF suspicions or 

confirmed cases were reported from pig farmers, cross-sectional surveys detected 0.3% of 

seropositive pigs and 3% of pigs infected by ASFV among the 3 different regions. Except during 
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the first spread of the disease in Madagascar, low mortality rates are usually declared by pig owners 

and ASF outbreaks emerge regularly every year (Costard, unpublished data). Further investigations 

on wild reservoirs could not detect any natural infection in bushpigs. Numerous examinations in 

pigpens and also wild areas showed the absence of Ornithodoros ticks within the 3 different 

regions. Ticks were only found in the Central region of Madagascar, in a single farm of Mahitsy, 

where their presence had been reported 8 years before; natural infection by ASFV was detected in 

those ticks whilst no pigs had been introduced in the pigpen for at least 4 years, confirming the role 

of these ticks as natural vectors and reservoirs for ASFV (Ravaomanana, unpublished data). All 

these results may reflect a “peculiar enzootic domestic cycle” in Madagascar, which mainly 

involves pig carriers and viral isolates of peculiar low levels of antibodies and virus, as it is 

observed in East Africa. Ornithodoros ticks may play a role, as they are naturally and persistently 

infected, but their actual restricted distribution makes their involvement very unlikely. 

 

4.3.2. ASF in West Africa 

We have very limited information on the history of ASF in West Africa before the 90‟s. The first 

outbreak of ASF is known to have occurred in Senegal in 1959, originating from Ginea-Bissau via 

Casamance region (Sarr, 1990). Nigeria reported its first outbreak in 1973 and Cameroon in 1982 

(Lefevre, 1998; Lefevre, 1998) considers that the disease in Nigeria then probably became enzootic 

although underreported. In Cameroon despite the implementation of control measures no eradication 

could be achieved and outbreaks occurred every year (OIE, 2008). 

Since 1996, the disease occurs for the first time in some West African countries: Ivory Cost (1996), 

Benin (1997), Togo (1997), Ghana (1999) and Burkina Faso (2003). It seems in 2008 that no or very 

few countries remained free of disease. Until 2004 the diseases had never been reported in Guinea. 

Since 2005 they are no data available but the situation in the neighbouring countries might suggest that 

outbreacks could have occurred. Similarly no data is available for Liberia and Sierra Leone because of 

the politic situation in these countries. 

The description of the different outbreaks of ASF in West Africa lets us distinguish two 

epidemiological patterns. 
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Although the indirect transmission via Ornithodoros ticks has been shown in Madagascar, East and 

South Africa, the epidemiological situation might be different in West Africa.  

According to the results of a study carried on in Senegal between April and August 2006, the 

epidemiological scheme could be different from the pattern warthogs - ticks – pigs (Le Glaunec, 2006). 

During this study, investigations were carried on in the Sine-Saloum region of the Senegal: soft ticks 

were found in 43.6% of the farms (or around, near the pig rest zone). The farm prevalence had a 95% 

confidence interval of [33.89% - 53.23%]. Nevertheless no statistical link has been found between the 

presence of soft ticks in (or around) the farm and cases (or suspicions) of ASF outbreaks during the 3 

years before the investigation. Furthermore on these sites contact between warthogs and pigs might be 

highly improbable. 

Analysis of ticks collected in the same areas in January 2006 demonstrated for the first time that O. 

sonrai is naturally infected with ASFV (Vial, 2007). 

These different results could explain that if ticks could eventually be in contact with pigs and sustain 

ASF in the farms, they might not play an important role in the emergence and spread of the disease in 

and between the farms. O. sonrai might contain the ASF virus but its ecology may not explain that 

these ticks are reservoir and vector of the disease. 

Information on the existence of a sylvatic cycle is scarce and it seems that there might be no or very 

limited connection with the domestic cycle. There is no evidence of the presence of the virus neither in 

warthogs nor in “sylvatic” ticks. But there is also no evidence of its absence. 

As a matter of fact we can distinguish two main epidemiological patterns in West Africa: 

- The “epizootic domestic cycle” characterized by regular introduction of the virus due to 

commercial exchanges between regions. Thus, the origin of sporadic outbreaks with high 

mortality in West Africa such as Benin, Togo(1997),  Ghana (1999) and Burkina-Faso (2003) 

could be mainly due to importation of infected pigs or infected meat (OIE, 2008; Lefevre, 

1998). Transmission occurs most of the time by direct contact between pigs, but could also 

occur through human passive transport between farms. Usually the spread of the disease stops 

because of high pig population mortality with or without control measures. 
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- The “enzootic domestic cycle”: the explanation of the enzootisation of the ASF disease in West 

Africa such as Senegal, Gambia, Guinea Bissau, Nigeria and Cameroon, could be the presence 

of symptom free carrier pigs in local breeds (Haresnape, 1987). In these animals in which the 

disease survives we could find modification of the virus with apparition of low pathogenic 

strains. These low pathogenic strains could reverse their viral capacity in stress situations. 

 

In Senegal, Sarr (1990) considered the disease had become enzootic in Casamance during the 80‟s. 

Recently several studies clarified the ASF situation particularly in Senegal. In the regions where most 

of pig farms are found, a first study collecting suspicions and notified cases gave us a rough estimate of 

the ASF farm prevalence. This first approach encompassing around 400 farms in three regions 

determined ASF risk factors. A logistic regression on risk factors presenting significant odd ratios 

revealed 3 main risk factors in the farms: free ranging, possibility for other breeders to enter into the 

farm and presence of cases or suspected cases in the surrounding area. 

The scheme of the domestic biological cycle for ASF adapted to Senegal was described by factorial 

analysis. The disease could be due to circulating virus in the neighbouring area. Its introduction in 

farms could be due on one hand to free ranging pigs which could be in contact with infected pigs 

(reproduction, snout contacts…) or with people carrying passively the virus, or in the other hand to 

other farmers entering the farm for trade or to alert to the presence of the disease (passive carrying). 

Indeed, farms do not have bio-security measures except modern farms that represent less than 2% of 

the total. Furthermore traditional farms are use to have several breeding behaviours not statistically 

risky but which increase the spread of the disease. For example inefficiency of the quarantine of 

incoming animals, burying pig carcass around the farm, lack of treatment and veterinary inspection are 

moving animals via public transport. This lack of knowledge is also important when measures are to be 

decided when ASF is suspected in the farm. 57% of the farmers will respond in first instance by selling 

their animals healthy or ill in order to avoid the sanitary decisions, especially in the region of Fatick 

and Kolda. Depopulating periods is not a usual practice (19% of the farmers) and there are only few 

declarations of suspicion to the veterinary services. On the contrary, in Ziguinchor region, 73% of the 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 66 
 

breeders react when there are ASF cases in the surrounding area. They enclose their animals to limit 

the free ranging, food is under control and troughs are separated from other animals. 

A second survey was conducted to sample farms in the same regions and permitted to confirm these 

data. The farm prevalence is respectively 31.75% [20.3% - 43.2%] in Kolda region, 45.24% [30.2% – 

60.3%] in Fatick region and 65.71% [54.6% - 76.8%] in Ziguinchor region. These results disclosed on 

a first hand a significant difference between Zinguinchor region and both other regions. On a second 

hand they disclosed that farmers really under estimate the disease prevalence, they only suspect the 

disease and sometimes notify it when they see clinical signs or mortality. This is why we can question 

the presence of asymptomatic carriers or if a lot of animals could recover keeping signs of the infection 

(IgG). This reality may reflect the importance of chronic disease which could be explained by the 

majority of pigs being of local breed and thus more resistant to ASF. Farmers are not aware of this 

chronic form of the disease characterized with respiratory disorders and drop in the growth and 

production. The increase of the prevalence in Fatick region (between 9% and 18.7%) compared to the 

one given by the Senegalese Institute for Agronomical Research (Sarr, 1990) reflects the important 

spread of the disease from south to north. This could be due to farmers moving to avoid the enzootic 

form of ASF and its constraints in these southern regions. This phenomenon is enhanced by a constant 

and increasing commercial exchange with this Casamance area. Furthermore there is a hudge lack of 

knowledge about this disease in the regions of Fatick and Kolda, respectively 20% and 25% of the 

breeders do not have any idea about the existence of ASF. 

 

4.3.3. ASF in Europe 

ASF remained endemic in Portugal and Spain for more than 30 years, until 1993 and 1995 

respectively when the disease was finally combated as a result of an intensive eradication 

programme (Sanchez-Vizcaino, 2006). The Italian island of Sardinia was the only European area to 

remain in an endemic situation. Recently, in 2007, the Caucasian countries have become affected, 

and in many areas there are scenarios which can lead to endemicity. There are 3 distinct scenarios: 

1. The domestic-domestic scenario without ticks:  

Direct transmission by contact between among sick and healthy animals is the most common route 

of transmission (Sanchez-Vizcaino, 2006). This scenario occurred in Portugal and Spain and spread 
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was mainly due to the presence of carriers and contaminated transport. Spain managed to eradicate 

the disease from this scenario in 1989, after four years of strict enforcement of biosecurity 

measures, including the scrict banning of feeding swine with infected raw meat or pork products. 

Once ASF in established in domestic pigs, carrier pigs become an important source of virus, and 

their role in the epidemiology of the disease is a major consideration in designing a strategy for 

ASF eradication. The serological recognition of carrier pigs was an important aspect in the 

successful eradication of ASF in Spain (Arias and Sanchez Vizcaino, 2002).  

2. The domestic-domestic scenario with ticks: 

This scenario also happened in Portugal and Spain, where the extensive production of Iberian pigs 

challenged the eradication efforts, which lasted until 1993 and 1995, respectively. O. erraticus 

mainly colonized domesticated areas, essentially pigsties in outdoor pig productions in Spain and 

Portugal (Caiado, 1988; Oleaga-Perez, 1990). Ticks were usually found hidden in the cracks and 

crevices of the traditional old buildings and very rarely in modern buildings or outside the sties, in 

rabbit burrows within a limited range (less than 300m) of infested buildings (Oleaga Perez, 1989; 

Oleaga-Perez, 1990). To determine in which on which farms O. erraticus was present, serological tests 

were developed to detect anti-O.erraticus antibodies on swine (Canals et al., 1990). Because of the 

ability of the virus to persist in tick populations for long periods this has been referred by the field 

veterinarians as one of the major reasons for abandoning O. erraticus infested pig farms after an 

ASF outbreak (Boinas, 1995).  

3. The free-ranging with/without wild boar and/or vector  scenario: 

This is the prevailing scenario in Sardinia and the Caucausus. In Sardinia, intensive and confined 

production systems represent a low percentage of total pig breeding systems, which are majoritarily 

constituted by backyard pigs (>90%) (Rutili, 2006). In the Caucasus the majority of pig breeding is 

seasonal and in backyard holdings. In Armenia there are some semi-professional farms under full 

confinement in specialized premises, however high biosecurity standards are not frequently met 

(Beltran-Alcrudo et al., 2008). Free-ranging pigs share communal lands in Sardinia (Montirano, 

2007, in the EU Standing Committee on the Food Chain and Animal Health document: 
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http://ec.europa.eu/food/committees/regulatory/scfcah/animal_health/asf_67112007_sa.pdf, last 

accessed October 2008). In affected areas of Georgia, Armenia and Azerbaijan, backyard pigs often 

share communal lands, there is lack of continuous containment of pigs and free roaming and 

scavenging are widely practised (Beltran-Alcrudo et al., 2008). This allows contacts between 

domestic pigs and wild boars, in which infection patterns are similar. European wild boars are 

susceptible to ASF infection, with clinical signs and mortality rates similar to those observed in 

naturally infected domesticated pigs in Spain, Portugal and Sardinia (Italy) (Contini et al., 1983; 

Sánchez Botija, 1982). 

It has been observed that the virus tends to disappear from wild boar populations if there are no 

subsequent re-infections (Laddomada et al. 1994) through contacts with free-ranging infected pigs 

and therefore, that wild boars do not play a major role as a virus reservoir in the absence of free 

ranging infected domestic pigs  (Laddomada et al. 1994; Perez et al. 1998; Ruiz-Fons et al. 2008).  

However, in areas where the disease is actively circulating and contacts with free ranging pigs 

occur, they can represent a serious challenge as disseminators of the virus across different territories 

(Beltran Alcrudo et al. 2008). Following the recent introduction of ASFV to Georgia in June, 2007, 

the disease has been spreading within the country and wild boars would have become infected 

through contacts with free ranging pigs. Wild boars have been reported infected in the Russian 

Republic of Chechnya, bordering Georgia and are equally suspected to have spread the disease to 

Azerbaijan and Armenia. It is feared that the infection in the wild boar population could complicate 

the short and long term control. 

The ways of transmission between domestic and wild pigs are likely to be through ingestion of 

infected carcasses or by direct contact. Information regarding the way the virus is transmitted 

between both species is unclear, but in any case requires contact between wild and free ranging 

domestic pigs. 

In the case of the European wild boar, as it occurs with the buhspig, contacts with infected ticks in 

their natural environment are probably unlikely since they do not live in burrows. So far, contacts 

between soft ticks (Ornithodoros erraticus)  and wild boars could never be demonstrated (Louza et 

al. 1989; Laddomada et al. 1994). However, this situation could exceptionally occur if they share 

http://ec.europa.eu/food/committees/regulatory/scfcah/animal_health/asf_67112007_sa.pdf
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common home ranges with domestic pigs when pig premises are infested. It is not known whether 

there are Ornithodorus in the Caucasian positive areas in and around pig pens or whether they will 

be vectors in case of presence. In Sardinia, there are no biological vectors but an endemic situation 

has been reached through the contacts among free-ranging, feral and wild swine. 

 

4.4. RECENT EPIDEMIOLOGICAL TOOLS SUPPORTING CONTROL AND MANAGEMENT STRATEGIES 

ASF is one of the most complex animal diseases, as different epidemiological cycles, involving 

domestic and wild swine and ticks as biological vectors in multiple combinations can happen. The 

existence of reservoirs, the lack of vaccine or treatment and the underdevelopment of pig rearing in 

endemic areas makes it an expensive disease to eradicate. There are no ASF models developed to 

aid decision making policies in respect of the best control strategy. The different scenarios and 

cycles increase modelling difficulty and uncertainties. Also, consequences other than economical, 

like the psycho-social or the environmental impact are hard to quantify. The identification of risk 

factors for the spread of ASF has been performed by several authors in several areas. The main risk 

identified is the free-ranging of pigs (Edelsten et al.1995, Allaway et. al, 1995 in Malawi; Manelli et 

al., 1997 in Sardinia), although insufficient veterinary resources and inadequate dissemination of 

information has also been recongnised (Edelsten et al., 1995 in Malawi; el Hicheri et al., 1998 in 

Cote d‟Ivoire; Penrith et al., 2007 in Mozambique), and in Madagascar wild reservoirs and ticks 

seem to play a central role for the mainte. More recently, spatio-temporal analysis has proven useful 

in Sardinia to identify high risk areas in the province of Nuoro (hot-spot area in number of 

outbreaks), allowing to target resources (Mannelli et. al, 1998). Socio-economic impact has been 

dealt with by Samui et al. (1996) in Zambia, by Lyra (2006) in Brazil and by Babalobi et al. (2007) 

in Nigeria. The decade of 2000 is markedly moving to utilise epidemiological tools to prevent and 

early detect infectious diseases, as has been pointed out by the FAO and the OIE in several 

occasions (Roeder et al., 1999; Domenech et al., 2006). Epidemic investigation has evolved 

predominantly at the molecular level, and the different strains circulating in Africa have been 

genotyped revealing hypothesis regarding spread (Bastos et al., 2003; Bastos et al., 2004; Lubisi et 

al. 2005; Nix et al, 2006; Wambura et al., 2006). 
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Summary as provided by the authors: 

ASFV replicates in swine and in soft ticks of the genus Ornithodorus. ASF can be transmitted 

directly from diseased or carrier pigs to healthy swine (wild or domestic) whenever contact is 

possible; or indirectly through fomites, ingestion of raw infected pork or pork products, or by 

biological vectors like Ornithodorus ticks. However, there are different epidemiological cycles or 

scenarios depending on the specific circumstances in each geographical area regarding virus strain, 

host susceptibility, biological vector presence and/or vector interaction with susceptible hosts. In 

East Africa, for example, ASFV is maintained mainly in a sylvatic cycle involving O.moubata 

vectors and warthogs, complicating control efforts. Conversely, in the Iberian Peninsula, 

O.erraticus was mainly associated to domestic rather than wild suids habitats, and the disease was 

effectively controlled, among other measures, replacing the old pig sties by modern structures. In 

Sardinia and some African countries, the disease is maintained by free range/backyard production 

systems that have recovered from infection and can act as carriers. In the Caucasus, contacts 

between diseased wild boars and free ranging pigs seem to play an important role in the spread of 

ASF. In Western Africa, one of the predominant patterns has been transmission between domestic 

pigs due to uncontrolled movements. 
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Future research identified by the authors: 

Several international projects are being carried out to elucidate some of the current challenges in the 

epidemiology of ASF in Africa and Europe. In the Caucasus, it remains to be established if wild 

boars could have a reservoir rol or are only infected in areas where there are ongoing outbreaks in 

domestic pigs, and if there are biological vectors involved in which case it would be necessary to 

investigate their vectorial capacity or biting habits. In Sardinia and in Africa, attention is focused on 

the evolution of the circulating strains, from the molecular and the biological point of view an in the 

mechanisms of virus maintenance. Also, modelling of the best control options and risk mapping to 

aid in a targetted surveillance/ control are to be developed, together with an assessment of the risk 

of introduction of the disease into Europe. 
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5. DIAGNOSIS 

ASF may be clinically undistinguisible from other pig diseases such as CSF, erysipelas, 

Salmonellosis, Pasteurellosis or other septicaemic conditions. For this reason it is essential to send 

samples for laboratory examination. Two main approaches have classically been carried out in order 

to detect ASF: 1) the direct identification of the virus and 2) the detection of antibodies against the 

virus (OIE Manual of diagnostic Tests and Vaccines for Terrestrial Animals 2008). Tests are 

applicable both in domestic as well as in wild life populations. 

 

Reference experts and laboratories are shown in the following table 3. 

Table 3. Reference experts and laboratories for ASF 

 

Expert Laboratory Contact 

Dr J.M. 

Sánchez-

Vizcaíno 

Facultad de Veterinaria, 

Laboratorio de Vigilancia 

Sanitaria (VISAVET), 

HCV Planta sótano, Universidad Complutense Avda. 

Puerta de Hierro s/n, 28040 Madrid SPAIN Tel: (34.91) 

394.39.75 Fax: (34.91) 394.39.08 

Email: jmvizcaíno@vet.ucm.es or visavet@vet.ucm.es 

Dr Chris Oura Institute for Animal 

Health, Pirbright 

Laboratory 

Ash Road, Pirbright, Woking, Surrey GU24 ONF, 

UNITED KINGDOM, Tel: (44.1483) 23.24.41 Fax: 

(44.1483) 23.24.48 

Email: chris.oura@bbsrc.ac.uk 

Ms Alison 

Lubisi 

Onderstepoort Veterinary 

Institute, Exotic Diseases 

Division 

Private Bag X5, Onderstepoort 0110, SOUTH AFRICA 

Tel: (27.12) 529.95.60 Fax: (27.12) 529.95.95 Email: 

Lubisia@arc.agric.za 

 

5.1 AGENT DETECTION  

The OIE Manual includes precise instructions on which samples are suitable for laboratory testing 

and how to preserve them during their transportation to the reference laboratory. Virus can be 

isolated, particularly from lymphatic tissues.   

 

mailto:jmvizca%C3%ADno@vet.ucm.es%20or%20visavet@vet.ucm.es
mailto:chris.oura@bbsrc.ac.uk
mailto:Lubisia@arc.agric.za
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Hemadsoption test (HAD) 

The haemadsorption test (Malmqvist & Hay, 1960) is based on the capacity of pig erythrocytes to 

adhere to the surface of pig monocyte or macrophage cells infected with ASFV. Most A isolates 

produce this phenomenon of haemadsorption. A positive result in the HAD test is definitive for 

ASF diagnosis. Some „nonhaemadsorbing‟ isolates have been reported. Most of them are avirulent, 

but some do produce typical acute ASF.  

 

Fluorescent Antibody Test (FAT) 

The FAT assay (Bool et al., 1969) is used as an additional method to detect antigen in tissues of 

suspect pigs in the field or those inoculated at the laboratory. Positive FAT results, together with 

clinical signs and appropriate lesions, can provide a presumptive diagnosis of ASF. It can also be 

used to detect ASFV antigen in leukocyte cultures in which no HAD is observed and can thus 

identify nonhaemadsorbing strains of virus. It also distinguishes between the CPE produced by 

ASFV and that produced by other viruses, such as Aujeszky‟s disease virus or a cytotoxic 

inoculum. However, it is important to note that in subacute and chronic disease, FAT has a 

significantly decreased sensitivity. This reduction in sensitivity may be related to the formation of 

antigen-antibody complexes in the tissues of infected pigs which block the interaction between the 

ASFV antigen and ASF conjugate (Sánchez-Vizcaíno, 2006; OIE Manual 2008). 

 

Polymerase Chain Reaction (PCR) 

Highly conserved region of the genome are amplified by PCR techniques using specific primers for 

these genomic regions. This method allows the detection and identification of a wide range of 

isolates belonging to all the known virus genotypes, including both nonhaemadsorbing viruses and 

isolates of low virulence. This technique provides high sensitivity and specificity and is specially 

recommended for the identification of ASFV DNA in pig tissues that have undergone putrefaction, 

or when samples may have been inactivated during transportation to the laboratory. Four validated 

PCR procedures have been included in the OIE Manual: a highly sensitive gel-based PCR assay for 
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the detection of ASFV (Agüero et al., 2003), a PCR test that allow the differentiation of ASFV from 

CSFV (Agüero et al., 2004) and two real-time PCR assays (Zsak et al., 1995; King et al., 2003) 

 

Pig Inoculation 

Pig inoculation has classically allowed the differentiation between CSF and ASF, as these diseases 

produce indistinguishable clinical signs. However, this technique is currently not in use, since 

alternative laboratory tests that give reliable results for both ASF and CSF are available. The pig 

inoculation test is slow, expensive and difficult to perform and results in acute distress for the 

animals involved, which raises serious animal welfare concerns. It is therefore no longer 

recommended for use. 

 

5.2 ANTIBODY DETECTION 

Serological tests are recommended where the disease is endemic or where a primary outbreak is 

caused by a strain of low virulence or avirulent.  Some of these tests have been validated and are 

used for laboratory diagnostics and can be used for large-scale screening of sera (Arias and 

Sánchez-Vizcaíno et al., 1992; Escribano et al., 1990; Pastor et al., 1990; Sánchez-Vizcaíno, 1987; 

Pan et al., 1972). The most commonly used serological test is the ELISA –Enzyme-linked 

Immunosorbent Assay- The OIE Manual recommends the confirmation of suspected cases of 

disease by using a standard serological test (ELISA), combined with an alternative serological test 

(IFA). In warthogs, contacts with ASF virus can be detected serologically with different available 

tests such as Indirect ELISA (Hamblin et al. 1990), Western Blott or recombinant p30 proteins 

serological tests. However, in some cases, the percentage of detection has found to be very low 

(below 50%) (Perez-Filgueira et al. 2006). In bushpigs, many authors have failed to detect antibody 

circulation, and the validation of serology as a useful tool to detect infected bushpigs is not reported 

in the literature. 
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ELISA 

The ELISA (Arias and Sánchez-Vizcaíno et al., 1992; Pastor et al., 1990) test can detect antibodies 

to ASFV in pigs that have been infected with virulent and avirulent isolates. This is the great 

advantage of ELISA. 

Although ELISA sensitivity is very high, it can drop when the samples are poorly preserved. To 

solve this problem, several new ELISAs based on the use of ASFV recombinant proteins are now 

being validated (Gallardo et al., 2006). Carrying out a second confirmatory test such as the 

immunoblotting test or the IFA test described below is recommended in the case of a doubtful result 

or a positive result when sera are suspected to be poorly preserved. 

 

Indirect Fluorescent Antibody Test 

This test (Pan et al., 1974) is recommended as a confirmatory test in ASF-free countries where 

positive results in the ELISA test are found, and for sera from endemic areas that give an 

inconclusive result in the ELISA (OIE Manual 2008). 

 

Immunoblotting 

This test is recommended by the OIE as an alternative to the IFA test to confirm equivocal results 

with individual sera. The immunoblotting test is based in the same antigen-antibody binding 

principle. It is very specific and enables easy and objective interpretation of the results and a better 

recognition of weak-positive samples. Viral proteins that induce specific antibodies in pigs have 

been determined. These polypeptides have been placed on antigen strips and have been shown in 

the immunoblotting test to react with specific antibodies from 9 days post-infection. 

 

Counter Immunoelectrophoresis 

This test (Pan et al., 1972) provides results in only 30 minutes, but due to its low sensitivity it is 

recommended for the screening of pools of sera, but not individual samples. Counter 

Immunoelectrophoresis is a cheap technique that only requires the use of electrophoresis equipment 

and a constant-current power supply.  
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The Commission Decision 2003/422/EC approves a diagnostic manual for ASF in the European 

Union. 

 

http://eur-lex.europa.eu/pri/en/oj/dat/2003/l_143/l_14320030611en00350049.pdf
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Summary as provided by the authors: 

Laboratory tests are essential to establish a definitive diagnosis of ASF and there are many 

techniques available that allow a rapid diagnosis which aids in the control of ASF in the absence of 

treatment or vaccine.  

The isolation of the agent is recommended when a suspension of a disease occurrence arises in 

countries free from ASF but suspecting its presence and there are four methods: (1) inoculation of 

pig leukocyte or bone marrow cultures (cytopathic and hemadsortion effects); (2) antigen detection 

by direct fluorescent antibody test (FAT) in smears or cryostat sections of tissue; (3) detection of 

virus genome by PCR; (4) Negative results on viral isolation on leukocyte cultures or bone marrow 

cultures are confirmed. Cells from negative cultures are examined for antigen by FAT and 

subinoculation into fresh leukocyte cultures. If tissues are unsuitable for virus isolation and antigen 

detection, PCR is recommended. In doubtful cases, the material is passaged and the procedures are 

repeated. 

Serological tests are recommended where the disease is endemic or where a primary outbreak is 

caused by a strain of low virulence or avirulent. There are four methods: (1) tests for specific 

antibody detection in serum or extracts of tissue by ELISA (which is the prescribed test in the OIE 

manual for international trade); (2) Indirect fluorescenct antibody test; (3) Immunoblotting 

(confirmatory test); (4) Counter immunoelectrophoresis test (only for screening of large groups). 

There are also type-specific test but they are not available for routine use. 

 

Future research identified by the authors: 

Research is focused on the development of tests for virus strain typing, in the absence of 

neutralising antibodies that would allow serotype differentiation. Also, there is an ongoing 

evaluation of the current diagnostic tests to investigate the behaviour of the African isolates. 
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6. PREVENTION, CONTROL AND ERADICATION  

 

There is no vaccine available against ASFV so the control strategy largely relies on early detection 

through rapid diagnosis, implementation of strict biosecurity measures, and stamping out of infected 

and/or exposed swine (Sanchez-Vizcaino, 2006). The exponential intensification of animal 

movements and product exchanges enhances the risk of ASF introduction in a free country. 

Actually, the virus was recently introduced into Eastern Europe. It was initially reported in Georgia 

(June 2007), then the neighbouring Armenia (August 2007), Azerbaijan (January 2008) and Russia 

(June 2008). These countries are developing trade with the new eastern member states of EU, thus, 

ASF is an important issue for the next future. Considering this threat, an effective vaccine would 

help to control on of the major pig disease in Africa –providing an alternative to mass slaughter of 

animals and preventing the spread of the ASF in both Africa and Europe after an outbreak. 

 

Nevertheless, it has been possible to successfully control and even to eradicate ASF in many 

countries even in the absence of an available treatment or vaccine. Other countries, however, are 

still fighting against it. Challenges to the control and eradication include the existence of free-range 

production systems, contacts with Ornithodorus ticks and/or wild suids, and endemicity involving 

asymptomatic carriers of the disease. As an example, in just 4 years (1985-89) Spain managed to 

eradicate the disease in most of its territory (areas rearing intensive pigs); while in those areas with 

outdoor production systems and O. erraticus, eradication efforts totalled 10 years (1985-1995) 

(Ministerio de Agricultura, Pesca y Alimentación, 1996). Success is highly determined by a good 

communication among all parties involved in an outbreak (diagnostic laboratories, farmers, field 

and official veterinarians, disease crisis centres, media). Improvements in pig housing to avoid tick 

and wild animal contacts have proved to be very efficient in order to minimize infection to 

eradication levels and should not be forgotten. A cost-benefit analysis should determine in each 

case if contingency efforts will be directed towards control or towards eradication.  
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Because ASF is a costly disease and because there are no effective vaccines for its control, it is 

especially important that ASF-free areas are kept free by preventing ASFV introduction (Sanchez 

Vizcaino, 2006). 

 

6.1. EUROPEAN EXPERIENCES AND SCENARIOS  

The European Union (EU) successfully eradicated ASF from its territory, with the exception of the 

Italian island of Sardinia which remains endemic. The last EU countries to eradicate ASF were 

Portugal (1993) and Spain (1995). The EU regulations that deal with the control of ASF are 

collected under Council Directive 92/119/EEC, in which general measures for the control of certain 

animal diseases, like ASF, are laid (notification, zoning, surveillance, restriction/ban of movements 

and trade, stand-still, cleaning and disinfection, tracing back and forward, disposal of carcasses, 

restocking, reference laboratories and contingency planning); and Council Directive 2002/60/EC, 

with specific measures for the control of ASF, like the processing of all swine-derived products and 

waste, specification of the general measures of CD 92/119/EEC, control with insecticides, measures 

for the control and eradication of ASF in feral pigs, and measures to prevent the spread of ASFV by 

(biological) vectors and to retrieve vectors. 

Eradication and control measures are relatively easy to implement on intensive industrialised 

productions. Complications however arise if the vector is involved, if the swine population implied 

is wild or if there are free-ranging pigs. Spain, Sardinia and the Caucasus represent three examples 

of distinct epidemiological conditions which have been addressed in different ways: 

 

1) The example of Spain. Spain was endemic of ASF for more than 30 years (1960-1995). The 

Spanish pig production experienced huge changes going from family breeding to industrialised 

production in a few years. The increase in production from 1960 to 1989 was estimated to be of 

178.3% (Bech-Nielsen et al., 1995). Export restriction was however hampering the pig industry 

development. In 1985 the Spanish Coordinated Eradication Programme was implemented. The 

main measures taken included: (1) detection of ASF positives and carriers (diagnosis network by 

mobile veterinary field teams; serologic control of breeders, reference and regional laboratories; 
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elimination of outbreaks; identification, slaughter and compensation of carriers; zoning for up to 3 

months; presence of 10-20% of sentinels for 1-3 months previous to restocking; no restocking if O. 

erraticus on site); (2) strict enforcement of sanitary measures (improvements of sanitary 

infrastructures of holdings with funds and credits; enhanced biosecurity; investigation of contacts; 

establishment of protection and surveillance zones; control of movements, individual identification 

for animals moved for fattening/breeding; regionalisation); (3) active participation of farmers 

(publicity campaign and media cover; associations for sanitary defense, the members of which 

received aids from the administration to check health status). Ninety six per cent of the Spanish 

territory stopped experiencing outbreaks since 1987 (indoor production system), however, the 

southwest area continued to be infected. Infected area was maintained until 1993 because of 

unsanitary pigpens, infected O. erraticus and uncontrolled wild boars. Obtaining samples from 

wildlife populations with the collaboration of hunter‟s associations has proved to be an efficient 

method of monitoring the disease in wildlife populations (Perez et al. 1998; Arias and Sanchez-

Vizcaino 2002b). From 1993 serological screening programme carried out different criteria 

depending on type of area (free, surveillance or infected) but mainly on wild boars and breeding 

sows, and all pigs in areas of O.erraticus; unsane pigpens destroyed and metal fences were 

constructed around good pigpens to avoid entrance of animals. Last outbreaks in Portugal had been 

recorded in the border with Spain, so from 1994 until 1996 there was a Coordinated Programme 

with joint efforts with Portugal and partly funded by the EC to eradicate ASF in the remaining 

infected areas. In 1995 Spain was declared free, having successfully eradicated ASF even from 

endemic areas without essentially needing a vaccine. (Arias and Sanchez-Vizcaino, 2002b) 

 

2) The example of Sardinia. Sardinia is a Mediterranean island belonging to Italy and self-

sufficient regarding pig production. ASF has been in Sardinia since 1978. The epidemiological 

scenario that prevails in Sardinia is traditional pig rearing with close contact with wild pigs but no 

presence of the biological vector. There was an eradication plan that was abandoned in 1998. The 

high risk factors for the endemic situation in Sardinia have been pointed out to be: illegal 

movements; deliberate auto-infection; free-ranging pigs; poor collaboration from pig owners; civic 
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use of commumal lands permitted by a law but lack of an extensive pig breeding regulation. (From 

the EU: 

http://ec.europa.eu/food/committees/regulatory/scfcah/animal_health/asf_67112007_sa.pdf ). 

Endemicity is also attributed to the prevailing practice of private house slaughter without veterinary 

inspection (ProMED mail post 20021128.5910). After a recrudescence of ASF in 2004-05, a new 

EU eradication plan was approved in March 2005 based on the correction of specific weak points in 

the monitoring and control of the disease; the division of the island into zones with different rules 

according to their ASF status (Infected, High risk, and Surveillance); marking of pig meat and pig 

products from Sardinia; and follow-up of the control measures. (Record of the Standing Committee 

on the Food and Animal Health held in Brussels on 2
nd

 March 2005; 

http://ec.europa.eu/food/committees/regulatory/scfcah/animal_health/summary36_en.pdf ). 

Commission Decision 2005/362/EC and amendments deal with the approval of ASF eradication in 

feral pigs in Sardinia. 

The delay between suspicion and culling has been estimated to be 6 days. The update on 1
st
 

November 2007   

(http://ec.europa.eu/food/committees/regulatory/scfcah/animal_health/asf_67112007_sa.pdf ) stated 

there were no active outbreaks, but still 3 active surveillance zones, and no positive holdings in wild 

boar-infected zones. An electronic epidemiosurveillance system was put in place. Management 

orders in 2006 included: 

- revise compensation for owners 

- familiar breeding regulation 

- sanitary education for owners 

- duty for communal authorities to regulate the pig breeding in their lands 

- regional legal and technical support for municipalities 

- 3 million euros for financing high risk area projects  work in progress (fences, water, etc). So 

far (Dec07-Apr08), finishing works in 5 municipalities 

- Oncoming meetings with order forces and forest guards. 

 

http://ec.europa.eu/food/committees/regulatory/scfcah/animal_health/asf_67112007_sa.pdf
http://ec.europa.eu/food/committees/regulatory/scfcah/animal_health/summary36_en.pdf
http://ec.europa.eu/food/committees/regulatory/scfcah/animal_health/asf_67112007_sa.pdf
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3) The example of the Caucasus. Georgia, Armenia, and Azerbaijan (non-EU territory) together 

with areas in Russia boundering Georgia have been recently affected by ASF for the first time 

(2007-08). The situation in Georgia is marked by the difficult political situation, which does not 

favour the regional coordinated ASF control efforts, a high percentage of undeveloped pig industry 

(small backyard holdings, free roaming and scavenging) and presence of wild boars. In Armenia, 

the situation is similar regarding backyard pig production and presence of wild boar, although there 

are also some full-confinement specialized premises 

(http://www.fao.org/docs/eims/upload/242232/EW_caucasus_apr08.pdf). 

Azerbaijan had a reduced pig population (the majority of country is Muslim) the whole of which 

was culled to control the disease (ProMED mail post 20080202.0416).  

Both Georgia and Armenia received international help and assessment to aid with the control of 

ASF. Georgia and Armenia received recommendations on the control program and on the 

epidemiological investigation from a joint mission EC/FAO/OIE in June 2007 (ProMED mail post 

20070627.2066,  

http://www.fao.org/newsroom/en/news/2007/1000612/index.html), from the Swiss Agency for 

Development and Cooperation in July (ProMED mail post 20070920.3131; full report can be found 

at  

http://www.safoso.ch/activities/ongoing_activities/index.html). Armenia also received a visit from 

FAO in October 2007 (ProMED mail post 20071004.3275), as their assistance was needed for 

compensation schemes, improved diagnosis and surveillance, and training of farmers. Finally, the 

FAO Technical Cooperation Programme has provided Armenia and Georgia each with US$ 500 

000 for emergency assistance against ASF (TCP/ARM/3102, available online at 

 http://www.fao.org/world/Regional/reu/projects/TCP_ARM_3102%20(E)_en.pdf; 

TCP/GEO/3103, available online at  

http://www.fao.org/world/Regional/reu/projects/TCP_GEO_3103%20(E)_en.pdf). 

ASF was late detected in Georgia as it was misdiagnosed as Postweaning Multisystemic Wasting 

Syndrome (PMWS) (ProMED mail 20070607.1845) in May 2007, which was confirmed to be ASF 

http://www.fao.org/docs/eims/upload/242232/EW_caucasus_apr08.pdf
http://www.fao.org/newsroom/en/news/2007/1000612/index.html
http://www.safoso.ch/activities/ongoing_activities/index.html
http://www.fao.org/world/Regional/reu/projects/TCP_ARM_3102%20(E)_en.pdf
http://www.fao.org/world/Regional/reu/projects/TCP_GEO_3103%20(E)_en.pdf
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by the OIE reference laboratory (IAH, Pirbright) in June 2007. The start date of the outbreak was 

estimated to have happened in April 2007 (WAHID report 

http://www.oie.int/wahid-prod/public.php?page=single_report&pop=1&reportid=5720). The 

Caucasus area lacked PCR diagnostic capability until June 2007 when it was established in Georgia 

and Azerbaijan (ProMED mail post 20070615.1954). 

 

6.2. AFRICAN EXPERIENCES AND SCENARIOS 

6.2.1. Production systems in Africa 

Pig farming in countries like Mozambique and in many other African countries can be characterized 

by commercial farming, basically found in urban and periurban areas, and small scale farming 

found basically in rural areas. Commercial farmers usually apply rigorous and adequate sanitary 

measures to protect their herds from ASF. In contrast, in rural areas, traditionally reared pigs are 

allowed to roam freely, allowing contacts with wild pigs and soft ticks. Very often, those farmers 

ignore the ways of transmission of the disease and the measures they need to apply to prevent it.  

 

The source of infection for commercially farmed pigs appears to be the movement of infected pigs 

from rural to urban areas and in that sense, the existence of a small scale family sector, represents a 

major permanent risk for the commercial sector. Unfortunately, the occurrence of disease in 

commercial farms results in substantial economic losses (Samui, 1996). This results in negative 

perceptions among development agencies that are reluctant to invest in pig production in most of 

sub-Saharan Africa. 

 

Therefore, adequate measures of protection are necessary for both sectors to be able to co-exist with 

each other. Despite high frequency of outbreaks in many countries in Southern Africa, pigs remain 

a species of considerable socio-economic importance. As a result, pig farming in rural areas is 

considered a worthwhile occupation in many countries since it provides a source of protein and 

income. This has allowed, in addition to the two categories of pig farmers stated above, the 

emergence of farmers in rural and peri-urban areas, that are investing in feed to support better 

production and are receptive to suggestions to improve their productivity and to implement 

http://www.oie.int/wahid-prod/public.php?page=single_report&pop=1&reportid=5720
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preventive measures. In rural and peri-urban areas, education programmes of pig farmers 

associations, community leaders or rural extension officers implementing knowledge about 

prevention and control of ASF are perceived as a useful method to achieve producer-based systems 

of surveillance and control of ASF (Penright et al. 2004a & b). 

 

6.2.2. Control measures 

6.2.2.1. Areas with existence of a sylvatic cycle and limited pig tradition 

In the absence of vaccine and considering the implication of the sylvatic cycle in the epidemiology 

of the disease in Southern and East Africa, it seems logical that the separation between domestic 

pigs and wild hosts and treatment of pig premises with acaricides (Pérez-Sánchez, 1992; Plowright, 

1994) where tick infected by ASFV occurs, should be useful methods of ASF control. The physical 

separation between domestic pigs and wildlife has given good results in controlling the disease, 

even in areas where the virus was circulating among natural populations of infected warthogs 

(Plowright 1981;Wilkinson 1984) 

 

Based on the presence of the above epidemiologically significant factors and occurrence of 

outbreaks, South Africa has designated, since 1935, ASF control areas that mainly constitute the 

North West, Limpopo, Mpumalanga and northern KwaZulu-Natal. In these areas commercial pig 

farming is discouraged and where it occurs, strict requirements such as pig proof double fenced in 

paddocks have to be adhered, to ensure that pigs do not come in contact with wild pigs or ticks.  

Movement of pigs and pig products from these areas is restricted to movement permits. Animal 

slaughter and area quarantine are the only methods of control for the disease. These measures were 

also quite successfully applied in Kenya between 1964 and 1994, providing good results (Penrith et 

al. 2004a). In South Africa, eight outbreaks with a total of 260 cases of pig infections were reported, 

mainly in Limpopo Province between 2000 and 2005. These are largely rural, mostly poverty 

stricken areas where pig- production is the major source of income with some commercial 

producers. Most outbreaks in the ASF control areas occur within free ranging herds. Control has 

otherwise been successful, that a system of accreditation of farms with high health status has been 

implemented. 
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Finally, for some Southern and Eastern African countries such as RSA, Zimbabwe, Botswana, 

Namibia and Tanzania, control is facilitated by lack of tradition in pig farming.  

 

6.2.2.2. Control in countries with only a domestic cycle and widespread pig tradition 

The situation is different in other areas of Africa, such as Mozambique, Angola, Malawi, or many 

West African countries were keeping pigs is widespread. In the cases where only a domestic cycle 

is present, as seems to be the case in West Africa, the disease is maintained by “rolling epidemics” 

(Penrith et al. 2004a), transmitted from one pig population to the other, as new susceptible 

populations of pigs become available. In those situations, control can be achieved as long as the 

pigs are confined and protected from the exposure of other pigs and fomites. This situation can be 

easily achieved by commercial farmers or farmers that have sufficient means to feed their pigs in 

captivity. 

 

However, in many developing countries, and particularly in Africa, poverty conditions condemn pig 

owners to let their pigs in free ranging conditions to scavenge for food. In those, circumstances the 

disease is incontrollable. This situation is aggravated by lack of infrastructures and resources from 

the veterinary services to confirm the diagnosis and react promptly, and lack of provisions from the 

governments to compensate pig owners for eventual implementation of stamping out operations, 

which would have catastrophic socio-economic implications and are clearly inapplicable in that 

context. This has devastating effects in the economies of rural people in developing countries and 

the potential spread of the disease to other geographic locations above the African continent such as 

the introductions in Madagascar (Roger, 2001), and more recently in Mauritius (Defra 2007) or the 

Caucasus (Penrith et al. 2004a). 

 

In that context, a suitable and potentially viable alternative would be to achieve the 

participation/cooperation of pig producers in developing countries (Penrith et al., 2007). In those 

cases, education and awareness among the producers associations of how the disease is transmitted 

and about preventive and control methods have proved to be useful, to detect the disease promptly 
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and to control it, in those cases where pigs can be kept indoors. In systems of traditional pig 

production, where feeding pigs indoors in uneconomical, exploitation of natural resistance of pigs 

might be an option (Penrith et al. 2004a), that has not been so far sufficiently explored (Thomson et 

al. 1999). 

 

Ideally, the control measures to be implemented in the case of a localized outbreak are the 

following ones: 

o Early warning and reporting 

o Quarantine of infected herds and movement control 

o Immediate slaughter of all pigs and compensation of the owners 

o Burial and treatment or burning of carcasses in burial sites for carcasses as close as possible 

from the infected site. Avoid moving carcasses over distances. 

o Wholesale destruction of edible meat, or alternatively boiling of the meat from non infected 

pigs for 30 minutes, before transport and consumption. 

o Cleaning and disinfection of infected premises with 2% sodium hypochlorite, sodium 

hydroxide or commercial viricidals 

o Treatment of the premises with acaricides. 

o Keep premises empty before restocking. The period of keeping them empty is variable: OIE 

recommends 40 days (International Animal Health Code Comission 2001). However, much 

shorter periods can be considered under tropical conditions (Plowright et al. 1994). 

o A population of sentinel pigs, fully susceptible and serologically negative should be 

introduced in the premises and monitored during six weeks without clinical signs before 

restocking (Penrith et al. 2004a). 

 

6.3. VECTOR CONTROL  

Control of O.erraticus is very difficult due to its long life, resistance to fasting, the possibility of 

alternative hosts other than pigs and the possibility of hiding deeply in the fissures of the buildings 

where it is difficult to spray with acaricides. Its eradication from the old buildings has generally been 

very unsuccessful. Suggestions for control include inoculation of the pig hosts with avermectins or 
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chlorpyrifos, use of fumigation with methylene bromide associated with a spray application of a 

product type carbaryl (Endris, 1992). No vaccine against the ticks exists yet, but studies have been 

undertaken to evaluate several salivary glands extracts and "concealed" gut antigenic extracts 

(Manzano-Roman, 2007; Manzano-Roman, 2006; Astigarraga, 1997; Astigarraga, 1995). 

From the observations made in the field, no effective method for the long-term control of ticks exists 

and the various alternatives need further investigation. At present the only practical measure is not to 

house pigs in old, infested, buildings and prevent their access to them when located within the area of 

free ranging of a pig herd. There are tests that identify the presence of ticks by detecting salivary 

antigens of ticks in swine (Canals et al., 1990). 

 

6.4. VACCINES 

Since the first attempt to develop a vaccine in Portugal in 1963, a satisfactory vaccine immunisation 

has been not achieved. Live-attenuated, inactivated, proteins or recombinant vaccines have been 

tried unsuccessfully. The reasons are essentially the ASFV lack of induction of neutralising 

antibodies and ASFV‟s variability. 

 Inactivated vaccine does not produce any protection. Live-attenuated vaccine protects some pigs 

against challenge with the homologous strain of virus, but the possibility of some of these pigs 

becoming carriers and developing chronic lesions exists and increases when a large number of pigs 

are vaccinated (Manso Ribeiro e al. 1963; Sanchez Botija 1963). Other studies have shown that 

serum from pigs resistant to homologous and some heterologous strain of ASFV inhibits (in vitro) 

infection of cells with different, but related, heterologous strains (Ruiz Gonzalvo et al., 1986). The 

analysis of the complete nucleotide sequence of ASFV (Yanez et al. 1995) has opened new 

opportunities to explore immune mechanisms of protection and roles of various ASF virus genes. 

However, the eradication of ASF from Portugal and Spain, after more than 20 years of endemicity, 

proved that vaccine is not essential in the eradication of this complex disease (Sanchez Vizcaino, 

2006). 
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6.4.1. Immunology 

Studies on porcine protective immune responses against ASFV have been of the major goals of 

researchers since the disease was first diagnosed in Africa (Montgomery, 1921). The difficulty in 

inducing effective immunity may be related to the great variability observed among ASFV isolates 

or to the fact that ASFV replicates in some cells typically involved in the immune response, like 

monocytes and macrophages.  ASFV is highly antigenic and high levels of specific antibodies are 

produced during ASFV infection, which are detectable for a long time after initial exposure 

(Sanchez-Vizcaino, 2006). Initial research strategies aimed at identifying the role of antibodies in 

protection. Depending on the virulence of the isolate, ASFV infected pigs produce antibodies 

detectable at the beginning of the disease (Malmquist, 1963; Coggins, 1974; Hamdy e Dardiri, 

1984), but viraemia develops in parallel to the high level of antibodies (de Tray, 1957; De Boer et 

al., 1969). Moreover pigs surviving natural infection with virulent and/or attenuated isolates resist 

challenge inoculation with the homologous and with the originally virulent isolates respectively, 

although with non-detectable neutralising anti-ASFV antibodies (Mendes, 1954; Mendes e 

Daskalos, 1955; Mendes, 1962; Malmquist, 1963; Manso Ribeiro et al., 1963; De Boer 1967). 

Passive transfer of humoral immunity by the administration of anti-ASFV serum from pigs and 

other infected animals doesn‟t interrupt the course of infection (De Boer, 1967; De Boer et al., 

1969). The incapacity of the immune sera to neutralize the pathogenic capacity of ASFV was also 

identified in studies in which immune serum was administrated to convalescent animals in 

conjunction to ASFV (Montgomery, 1921; Steyn, 1932; Baptista and Mendes, 1954; De Tray, 

1963). To the present, no clear evidences show that specific anti-ASFV antibodies block the lethal 

effect of the viral infection. Nevertheless, studies have demonstrated that antibodies can interfere 

with the development of the disease when sera or colostrum obtained from pigs surviving the 

infection were experimentally inoculated in pigs together in with ASFV, in which a delay in onset 

and the development of the disease, a reduction of viral titres and increase in the surviving rate to 

viral infection was observed (Schlafer et al., 1984a, b; Wardley et al., 1985).  

The role of anti-ASFV antibodies in the complement mediated cell lyses and in ADCC based on in 

vitro studies (Norley and Wardley., 1982, 1983a) suggests these mechanisms may play a role on the 

protection by antibodies described above. 
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As previously mentioned although the neutralising capacity of ASFV by specific antibodies has not 

been demonstrated, pigs surviving natural or experimental infection with virulent isolates survive 

challenge with homologous virus and pigs inoculated with attenuated ASFV survive infections with 

the parental virulent virus. These facts point for potential role of cellular and/or cellular based 

mechanisms in the survival of the pigs against ASFV infection as first reported by the development 

of hypersensitivity reactions to antigens (Shimizu et al., 1977), by the development of NK activity 

(Norley and Wardley 1993b) and by cytotoxicity activity of leukocytes (Norley et al., 1984) 

identified in experimentally infected pigs. 

Other studies on the functional integrity of swine immune system during ASFV infection were 

developed based on measurement of peripheral blood leukocyte numbers, quantification of T and B 

lymphocytes and assessment of lymphoproliferative responses to mitogens and to virus or viral 

antigens. Some authors did not observe major changes in blood components of swine inoculated 

with some ASFV isolates (Knudsen et al., 1987; Genovesi et al., 1988; Wardley and Wilkinson, 

1980), while lymphocytopenia observed by others during early post swine infection has been 

attributed mainly to B lymphocytes (Wardley and Wilkinson, 1980), or to a decrease on T 

lymphocytes (Sanchez-Vizcaino, 1981). Others observed no evidence of replication of ASFV in 

either T-cells and B-cells (Gomez-Villamandos, Hervas et al., 1995; Minguez et al., 1988). 

Assessment of lymphocyte functional capacities, in experimentally ASFV inoculated swine, 

through the study of lymphoproliferative responses to mitogens has also shown conflicting results 

depending on the model of infection used (Martins and Leitão, 1984). The study of specific cellular 

effector mechanisms potentially involved in swine protection against ASFV infection has been 

based on experimental models in which pigs immunized with naturally occurring or attenuated low 

virulent isolates have shown to survive infection with highly virulent isolates (Escribano et al., 

1993). Among others the non-haemadsorbing, naturally occurring low-virulent ASFV/NHV/P68 

(NHV) isolate has been used to protect animals against ASFV/L60 (L60) allowing comparative 

studies of swine immune responses induced by each isolate and after challenge inoculation (Martins 

and Leitão, 1994). 
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Following development of research on different cellular immune mechanisms in viral infections and 

in particular regarding the identification of MHC restricted T cell cytotoxicity (Zinkernagel et al., 

1974), later on the 80‟s and early 90‟s research efforts started to focus on cellular and cellular based 

immune responses towards ASFV infection.  

Relevant on those studies, activity of ASFV specific cytotoxic T lymphocytes was evaluated in 

SLA “inbred” pigs experimentally infected with the ASFV/NH/P68 isolate (NHV) ; Cytotoxic 

assays were conducted in vitro using mononuclear leucocytes from infected pigs as effector cells 

and singeneic and halogeneic macrophages infected in vitro with different ASFV, as target cells. 

This model allowed for the first time the identification of ASFV specific CD8
+
 lymphocytes that 

lyse macrophages infected with different ASFV isolates in the context of SLA Class I (Martins et 

al., 1988 e 1993). The in vitro re-stimulation of effector lymphocytes with homologous virus 

induced the production of IL2 and the development of LAK cells (limphokine activated killer) that 

have lytic activity over the infected macrophages (Scholl et al., 1989). 

The identification of the CTL activity opened new insights for the characterization of some viral 

antigens recognized by these cells, namely:  

- VP32 expressed in macrophages infected by the “Vaccinia” recombinant virus using the 

experimental infection model E-75a, attenuated by passages in cultured Vero cells (Alonso et al., 

1997);  

- VP72 expressed in macrophages treated with the protein extract of external membranes from 

recombinant clones in the form of fusion proteins with the lipoprotein of the membrane of 

Pseudomonas aeruginosa (OprI) (Leitão et al., 1998), using the NH/P68 infection model. The use 

of the expression vectors above mentioned allowed the obtention of a recombinant clone named A2 

(Leitão et al., 2000) with the capacity to stimulate the LCT specific activity for ASFV in vitro. This 

protein demonstrated to have 99% of identity with the ORF of the gene G1340L of the isolate 

BA71V. LMN from pigs inoculated with preparations from the outer membrane of A2 reduced in 

99.6% the titles of ASFV, when in vitro incubated with cultures of autologous macrophages. 

Nevertheless, after inoculation with the virulent virus these pigs developed ASF acute and fatal. The 

above-mentioned studies suggest that different viral components are able to contribute to the CTL 
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activity, thus rendering difficult the identification of dominant CTL epitopes in the different ASFV 

isolates or attribute their exclusive role in protection against natural infection. However, the 

relevant role of ASFV specific CTL activity on protection has been recently confirmed by showing 

that in vivo depletion of CD8
+
 T lymphocytes abrogates protective immunity to ASFV (Oura et al., 

2005)  

The role of NK cells in protection against ASFV has been pointed in studies using pigs inoculated 

with the NHV isolate (Leitão et al., 2001) in which two patterns of infection are observed: pigs that 

remain assymptomatic and pigs that develop chronic lesions of ASF. In pigs remaining 

assymptomatic the viraemia was rarely observed in late stages of infection, the levels of serum Igs 

were unchanged, the concentration of anti-ASFV specific antibodies observed was relatively low, 

but the levels of the NK activity were very high. These animals survived challenge with the highly 

virulent L60. In pigs with chronic forms of disease no changes where observed in the levels of NK 

cells (in relation to control pigs), but developed fever and viraemia after 14 days of infection and 

high levels of specific anti-ASFV antibodies with marked hipergamaglobulinemia involving IgG1, 

IgG2, IgM and IgA. These results point to the importance of the role of the NK cells in the survival 

of the pigs to infection. 

Relevant on the ASFV pathogenesis as above mentioned, the virus preferentially infects pig 

monocytes and macrophages, which are the main targets for the in vivo viral replication. In 

accordance to this, studies in vitro have shown that ASFV of different virulence infect and induce 

lyses of blood derived macrophages (Casal et al, 1984; Enjuanes et al., 1977; Malmquist and Hay, 

1960), bone marrow and alveolar macrophages (Carrascosa et al.,1982; Malmquist and Hay, 1960). 

Macrophage infection by ASFV is of foremost relevance on the pathogenesis infection taking in 

consideration that macrophages play important roles both on innate and acquired immune 

responses. Relevant in the role of macrophages as orchestrators of immune responses they 

synthesize cytokines that have an impact in the development of the inflammatory responses (pro-

inflammatory cytokines) and cytokines that participate in the development of the specific immune 

mechanisms (immunoregulatory cytokines) through the activation of Th1 and Th2 responses 

(Murtaugh et al., 1996).  
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Among others, initial studies have shown that ASFV inhibits phagocytosis, antibody mediated 

phagocytosis and chemotaxis in porcine macrophages cultivated in vitro although no changes were 

observed in the expression of Fc receptors, neither in the capacity of the induction of the antibody 

dependent citotoxicity (ADCC) (Martins et al., 1988). In identical circumstances, the expression of 

SLA antigens was not changed on those cells (Gonzalez-Juarrero et al.1992).  

More recently, research towards the characterization on the impact of ASFV infection on the 

expression of relevant cytokines at mRNA levels in porcine blood derived macrophages infected in 

vitro with the two ASFV isolates of different virulence, L60 and NHV, demonstrated a particular 

effect of the infection by this  isolate in that significantly increased levels of transcripts for TNFα, 

IL6, IL12 and IL15 were identified at 6 hours post infection in contrast to the effect of infection 

with L60 (Gil et al.,2003). Extended studies, recently published (Gil et al, 2008), on the impact of 

the infection of porcine macrophages by the two above mentioned ASFV isolates in the expression 

of IFNα, TNFα, IL12p40 (mRNA and protein) and TGF  (mRNA) at different times post infection 

(2, 4 and 6 hours), confirm the differential expression of those cytokines on macrophages infected 

with either ASFV isolates and reinforce the role of the NHV as capable to induce cellular based 

responses in the natural host such as the previously described ASFV-specific CTL activity (Martins 

et al., 1993) and NK activity (Leitão 2001), thus supporting the relevance of Th1 responses in the 

host, towards activation of protective cellular immune responses against ASFV infection which may 

be relevant for the development of efficient vaccines. 

 

6.4.2. ASFV genes involved in immune-evasion 

Like other large DNA viruses such as Herpes, Pox or Adeno viruses, ASFV has developed a large 

range of defence mechanisms to escape from the immune host responses. In vivo, the virus 

replicates mainly and preferentially in macrophages which are a key player of the innate immunity, 

able to react very quickly and with a large range of responses to infection. They are indeed 

responsible for the secretion of pro-inflammatory cytokines. The main strategy used by the virus to 

evade host defences is to modulate the signalling pathway of infected macrophages in order to 

interfere with the expression of certain genes including those playing a role in the innate and 

acquired immunity (Dixon et al., 2004). 
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Some of the virus proteins have a direct impact on the host immune responses. The A238L gene 

encodes a protein playing a crucial role in the control of the immune responses. This protein has an 

IκB-like domain that inhibits the host transcription factor NFκB (Yanez et al., 1995). The NFκB 

pathway is part of the transcriptional activator of genes encoding pro-inflammatory cytokines, 

chemokines and anti-apoptotic proteins like IAP, Bcl2 and Bcl-IX (Ghosh et al, 1998). The IκB 

family members bind the NFκB transcription factor resulting in the inactivation of gene 

transcription (Baeuerle and Henkel, 1994; Ghosh and Karin, 2002). Actually, A238L attach the 

NFκB transcription factor thus inhibiting the induction of the pro-inflammatory cytokine responses 

(Powell et al., 1996; Revilla et al., 1998). A238L protein has also a PxIxIxT domain at the C-

terminal end of the protein that binds the calcineurin catalytic subunit – a serine-threonin 

phosphatase – (Miskin et al., 1998, Miskin et al., 2000). Calcineurin has a wide range of action, like 

activation of transcription factors, modulation of the receptor activity and regulation of the cell 

apoptosis by the pro-apoptotic Bad protein activation (Clipstone and Crabtree, 1992; Macian et al., 

2001; Hamalainen et al., 2002; Crabtree and Olson, 2002; Graef et al., 2003). To some extent, the 

activity of A238L is similar to that induced by cyclosporine A, an immunosuppressive drug that 

also binds calcineurin and inhibits its phosphatase activity (Jin and Harrison, 2002). Blocking the 

activation of macrophages result in the down-regulation of NFAT (nuclear factor of activated T 

cells) and/or Elk1 transcription factors and consequently prevents the lymphocyte activation. In 

addition, the expression of A238L protein in infected macrophages reduces the expression of 

cyclooxigenase-2 and the production of prostaglandin E2 (Granja et al., 2004). 

 

ASFV modulates the cell apoptosis. Rapid apoptosis of infected cell would block the replication of 

the virus and prevent the dispersion of new virions. Numerous viruses have thus developed 

mechanisms to by pass this defence mechanism by encoding genes to prevent cell apoptosis 

(Benedict et al., 2002; Hay and Kannourakis, 2002). ASFV encodes two proteins similar to host 

anti-apoptosis proteins. The A224L protein shows similarity to the IAP family of apoptosis 

inhibitor. Bounds to the caspase-3, it inhibits its protease activity as well as the cell death (Nogal et 
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al., 2001). It must be noticed that the A224L protein is packaged into the virion which could 

indicates an early action after the cell infection. The second protein is the ASFV A179L which is a 

Bcl-2 homologue. This viral protein contains a domain in which any mutation consequently stops 

its anti-apoptotic activity (Neilan et al., 1993; Afonso et al., 1996: Revilla et al., 1997). A third 

protein was described to have anti-apoptotic effect: the EP153R whose action is not clear but which 

was described to reduce the transactivating activity of the cellular p53 protein (Hurtado et al., 

2004).  

 

After the identification of several genes involved in host immune defence or apoptosis evasion, 

deleted mutants were generated. Virus deleted for A238L, A224L (IAP homologue) and EP153R 

gene (C-type lectin) were constructed but their inoculation in pigs did not show any difference in 

terms of virulence comparing to the virulent wild type isolate (Neilan et al., 1997a, 1997b, 1999). 

This may result from the fact that the virus may have other subsidiary genes sharing the same 

functions or able to overcome the loss of these genes. 

 

MGF encoded proteins have been demonstrated to decrease the transcription of the type I 

interferon-encoding gene and indirectly the transcription cascade activated by this gene and 

responsible for a major innate response of the immune system to virus infection (Afonso et al., 

2004). Other viral proteins can interfere with the cell signalling pathway. j4R protein binds to the α-

NAC (α chain of nascent polypeptide associated complex) which is supposed to play a role in the 

translocation of proteins to the secreting system (Wiedmann et al., 1994;Goatley et al., 2002) as 

well as in c-jun trans-activation responsible for the transcription of many immunomodulatory genes 

(Yotov et al., 1998). An ubiquitin-coupled enzyme encoded by the virus has been also demonstrated 

to have a role in the regulation of other host genes transcription pathway by binding the host nuclear 

protein SMCy (Bulimo et al., 2000). 

 

The CD2v, encoded by EP402R gene, has a peptide signal and a single transmembrane domain. Its 

extracellular domain is similar to the host CD2 adhesion protein and contains two Ig-like domains. 
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CD2v supports the adsorption of RBC to the infected cells (Rodriguez et al., 1993; Borca et al., 

1994). The virus particle itself acquired the CD2v by budding through the outer cell envelope 

containing the CD2v (Ruiz-Gonzalvo et al., 1996). Pig infection using a CD2v deleted virus delays 

the viremia by slowing down the virus dissemination by the systemic route (Borca et al., 1998). One 

of the major ASFV characteristic is also to reduce both in vivo and in vitro the lymphocyte 

proliferation, the CD2v being responsible for a competitive inhibition of the interaction between the 

lymphocyte/CD2 and the macrophage/LFA3 (Borca et al., 1998). It was also reported that internal 

cytoplasmic part of the CD2v protein attaches to the actin binding adaptator SH3P7 that has 

possibly a major role in the protein translocation to, through and from the Golgi and thus modulates 

the protein trafficking within the infected cell (Kay-Jackson et al., 2004; Warren et al., 2002, Mise-

Omata et al., 2003).  

 

Selective or spontaneous gene deletion in ASFV isolates has allowed the identification of critical 

genes in terms of virus virulence in domestic pigs, cell tropism and capability to the virus to 

replicate in ticks (Tulman and Rock, 2001). The virus replication in pig macrophages in vitro is 

altered if some genes encoding for enzymes involved in the nucleotide metabolism are deleted, like 

DNA repair enzymes (Oliveros et al., 1997) or dUTPase homologues (Yanez et al., 1995). A DNA 

molecule can contain uracil after incorporation of dUMP during the DNA synthesis or after a 

spontaneous deamination of cytosine residues, leading to dU-dA and dU-dG base pair, respectively 

(Oliveros et al., 1999). These two base pair motifs are from highly mutagen to lethal for normal 

cells (Ingraham et al., 1986; Impellizzeri et al., 1991). To be repaired DNA-containing 

deoxyuridines is first excises by a DNA-uracil glycosylase (Barnes et al., 1993) and the use of 

dUTP instead of TTP to fill-in the gap is avoided by an enzyme: the deoxy-uridine phosphatase 

(dUTPase) which requires a certain dUTP/TTP ratio to achieve this substitution (Curtin et al., 

1993). This enzyme eliminates dUTP from the dNTPs pool but generates also some dUMP, 

precursor of TMP synthesised by the thymidylate kinases (Kornberg et al., 1992). Macrophages are 

highly differentiated and non-dividing cells which consequently have a limited pool of available 

nucleotides, particularly a low rate of TTP and dCTP, and do not have the capacity to synthesise 
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nucleotides (Terai et al., 1991). The presence of the viral dUTPase in the infected cell cytoplasm at 

both early and late stage of the infection is supposed to allow a high TTP/dUTP ratio in order to 

minimize the mis-incorporation of uracil in the viral DNA. Despite the absence of the viral enzyme 

in the cell nucleus its early presence in the cytoplasm is supposed to be efficient enough to maintain 

the integrity of the viral DNA synthesised early after the infection (Garcia-Beato et al., 1992). Thus, 

if the deletion of the dUTPase encoding gene reduces the virus replication in the macrophages, the 

deletion of the thymidine kinase generates a low virulent isolate in pigs (Moore et al., 1998; 

Oliveros et al., 1999). 

 

The deletion of the 9GL gene (B119L) involved in the virus morphogenesis as part of the redox 

chain, reduces the virus replication in macrophages (100-fold reduction) and also the virulence in 

pigs (Lewis et al., 2000). In addition, the elimination of MGFs 530 and 360 has been demonstrated 

to reduce the virus replication in ticks as well as the mortality of infected macrophages, suggesting 

a role of the encoded protein in the cell survival (Zack et al., 2001; Burrage et al., 2004). The 

deletion of the DP96R in the E70 isolate, if it did not impact the growth of the virus on 

macrophages reduced the viraemia in infected pigs from 100 to 1000-fold (Zack et al., 1998). 

 

6.4.3. Recent strategies 

African wild swine survive to infection with highly virulent isolates and domestic pigs could also 

recover from infection with low to moderately virulent strains (Leitao et al., 2001) or with closely 

related strains (Boinas et al. 2004; Leitao et al., 2001), it is sensible that defining immunological 

targets and the mechanisms involved in these models of protection may allow the development of 

an efficient vaccine. However, immunization has not yet been achieved. 

To develop a vaccine some elements must be taken in account: first the high number of targets and 

immunological events observed in infected animals and the fact that only few antigens (p32, p72 

and p54) or attenuated viruses have led experimentally to partial protection (Borca et al. 1994; 

Gomez-Puertas et al. 1998). A putative vaccine may consequently stimulate the response of both 

CD4 and CD8 T lymphocytes and B cells. Second, as it was described above ASFV can modulate 
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the host immune system by expressing proteins involved in the immune evasion suggesting that the 

gene encoding for these proteins are crucial for the virus survival in the host. 

Consequently, three different strategies have been defined to develop a vaccine against ASFV 

1. Generation of a recombinant and infectious Aujezsky virus targeting the 

macrophages and encoding for viral proteins that stimulate both production of 

neutralizing antibodies and cellular response. 

2. Delivery of recombinant proteins of the same virus antigens and including a 

fragment of an antibody recognizing porcine MHC class 2 to pig antigen presenting 

cells. 

3. Generation infectious but attenuated recombinant virus deleted specifically for genes 

of virulence and immune system evasion or deficient to replicates in cells. 

The first and second strategies were chosen because first an Aujezsky‟s virus vaccine is already 

accepted and used (van Oirschot GD 1990) and some studies demonstrated the role of neutralizing 

antibodies in the animal protection (Zsak et al. 1993; Borca et al. 1994; Onisk et al. 1994; Gomez-

Puertas et al. 1997). However, recently it has been shown that neutralizing antibodies to ASF 

proteins p30, p54 and p72 are not sufficient for antibody-mediated protection (Neilan et al. 2004). It 

has been demonstrated that CD8 T cells of multiple antigenic specificities are activated after ASFV 

infection in pigs (Gomez-Puertas et al. 1997; Jenson et al. 2000) explaining why immunization 

using only one epitope have failed. The use of a mix of recombinant proteins containing multiple 

epitopes is so pertinent and could allow a better protection. 

The third strategy may ensure that almost all the virus proteins would be expressed in order to allow 

the recognition by the immune system of most of the immune virus target to able a cross-protection 

between not too closely realted isolates. It can be possible using the same approach to develop 

recombinant ASFV defective enough to be unable to persist in pigs after one replication cycle 

(Andres et al. 2002). ASFV encodes for about 60 genes that are not essential for the virus 

replication. These genes play a role in the host immune system evasion or virulence and must be 

targeted. As examples: the CD2v is an adhesion protein that mediate the haemadsorbtion on the red 

blood cells accelerating the virus propagation in the animal by the systemic pathway ; it‟s deletion 
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delay the onset of the disease (Borca et al. 1998). A238L gene plays a major role in the modulation 

of the immune response by interfering on one hand with the induction of pro-inflammatory 

cytokines (innate immune response) (Tait et al. 2000) and on the other hand  by inhibiting the 

NFAT transcription factor controlling the activation of the lymphocytes (acquired response) Miskin 

(1998, 2000) Also, the j4R protein or a virus –encoded ubiquitin conjugating enzyme are known to 

have a role in the modulation of the host gene transcription pathway (Goatley et al. 2002; Bulimo et 

al. 2000). At last, a lot of genes belonging to the different MGF are known to be genes of virus 

virulence (Tulman and Rock 2001). Deleting selectively several of these genes in combination may 

lead to generate an attenuated virus which can be an efficient vaccine. 

 

6.3. RISK ASSESSMENT- POSSIBLE SOURCES OF INTRODUCTION AND SPREAD  

Risk assessment of the introduction of ASF may enable to target surveillance efforts and an 

epidemiological analysis may help to identify specific risk factors that enable a better control. The 

identification of possible ways of introduction is based on past experiences and highlights the 

importance of active and passive surveillance as well as biosecurity measures. 

The information available about the sources of introduction and spread of ASF is compiled in Table 

4. This information may be interesting for policy makers and it could be used for future risk 

assessments 
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Table 4. Suspected sources of introduction or spread of ASF 

 

Date  Country Suspected source of introduction or spread Reference 

1989 Zambia 
Bush area clerks fed sandwich leftovers to other 

clerks‟ pigs  

ProMED 

20010924.2327 

1960 Portugal Imported meat products Neitz, 1963 

1978 Brazil Raw waste at international airport McDaniel, 1986 

1978 Brazil 
Trade and tourism between Spain, Portugal and 

Brazil 
Lyra, 2006  

1978 Rep. Checa Raw waste at international airport McDaniel, 1986 

1978 Malta Raw waste at a sea port McDaniel, 1986 

1978 Sardinia Raw waste at a sea port McDaniel, 1986 

1980 Cuba Live pigs/pork products imports McDaniel, 1986 

1983 Italia Import of pig products McDaniel, 1986 

1985 Belgium Import of pork Biront et al. 1987 

1985 
The 

Netherlads 

Illegal feed swill from hospitals, hotels and 

restaurants 

Terpstra et al, 

1986 

1995 Malawi 

Introduction from endemic area in Malawi. Factors 

contributing to spread: scavenging pig husbandry, 

lack of mobility for vets to ensure observance of 

restrictions. 

Edelsten et al. 

1995 

1998 Nigeria 

Media advising not to eat meat from infected pigs 

(might have influenced people to give it to their 

animals?). 

ProMED 

19980916.1866 

1998 Nigeria Infected neighbouring country (Benin?) 
ProMED 

19980709.1282 

1998 Togo Infected neighbouring country ProMED 
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19980615.1128 

1998 Madagascar 

Late diagnosis (misdiagnosed as csf or taschen 

disease), no test for asf available, lack of 

surveillance or alert system, limited economic 

resources, O. moubata porcinus presence, 

Potamochoerus larvatus possibly contact with 

domestics 

Rousset et al. 

2001 

1999 Botswana 
Pigs had broken through fence and mixed with 

warthogs 

ProMED 

19990804.1339 

2001 Zambia 
Neighbouring abattoir, spread through movement 

of animals 

ProMED 

20080209.0527 

2001 Kenya 

Ugandan infected pigs brought to slaughter  pigs 

fed with abattoirs offals; or pigs brought to 

slaughter then sold alive instead. 

ProMED 

20010927.2356 

2001 South Africa Direct contact domestic pig-warthog 
ProMED 

20010810.1893 

2004 
Tanzania 

(endemic) 

Traded pigs introduced from neighbouring country 

into refugee camps 

ProMED 

20040426.1157 

2004 Namibia 

Tick bites: inadequate separation domestic/wild; 

feeding with offals from hunted warthogs (through 

the warthogs skin with ticks or directly by spleen 

and lymphnodes) 

ProMED 

20050109.0072 

2005 Nigeria Reoccurence by fomites 
ProMED 

20050815.2387 

2006 
Uganda 

(endemic) 

Residents blamed for failing to carry out proactive 

measures 

ProMED 

20060109.0076 

2007 Burkina faso Illegal movement of animals 
ProMED 

20070728.2429 
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2007 Kenya 
Illegal movement of animals and uncooked swill 

feeding 

ProMED 

20070505.1456 

2008 
Tanzania 

(endemic) 
Introduction of live susceptible pigs 

ProMED 

20080307.0924 
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Summary as provided by the authors: 

There is no vaccine available against ASFV so the control strategy largely relies on early detection 

through rapid diagnosis, implementation of strict biosecurity measures, and stamping out of infected 

and/or exposed swine.  

Some of the common failures to control the disease once it is spread are listed below: 

- Late detection 

- Insufficient resources or political unstability = poor disease control and surveillance system, 

no culling possible, inadequate communication schemes, null or low compensation to farmers, lab 

technology missing, insufficient vet mobility to observe compliance, insufficient vet or social 

workers training, rural pig housing that allow the presence of the vector or access to/from wild 

animals. 

- Scavenging pig husbandry or free-roaming animals. 

- Uncooked swill feed. 

- Illegal movements. 

- Ticks and wild pigs as reservoirs. 

- Co-circulation of several genotypes with different characteristics. 

- Failure to identify risk factors. 

Prevention is by far the best possible measure to avoid the disastrous consequences that an 

incursion of ASF may provoke, considering the high costs to control its spread due to the lack of an 

effective vaccine or treatment. Risk assessment tools should be applied in each area attending to the 

specific epidemiological conditions, such as sanitary condition in neighbouring or trading countries; 

quantity and type of imports; pig husbandry systems and practices; sanitary condition of pig 

industry; presence of vector, presence of wild boars; social-political-religious factors; networks 

among pig premises; or veterinary efficacy. The assessment can highlight where and whether it 

would be possible to experience a sylvatic cycle, involving ticks and boars that could be clinically 

inapparent; a sylvatic-domestic, where enhanced biosecurity measures should be applied to outdoor 
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pig production systems; or domestic, in which case standard measures against Notifiable diseases 

could be applied if resources are not limiting. Planning in advance is therefore essential, even 

regarding budget allowances, so that credits and international assistance can also be prepared to be 

readily available. 

Early warning systems and a good epidemiosurveillance network are the next step to avoid an 

uncontrolled spread. Unfortunately, in many cases ASF has been the scapegoat to build an efficient 

disease control system.  

 

Future research identified by the authors: 

Identification and definition of the mechanisms of virus encoded “evasion” genes which interfere 

with host defences and immune responses and/or affect virus productivity and virulence, will 

improve basic knowledge for better understanding viral-host interactions. Pig macrophages are the 

main targets for viral infection. Deeper characterization of viral interactions with these cells, and 

with the domestic pig as a natural host, namely at the level of cytokine and chemokine protein 

translation and consequent activation of relevant cellular protective mechanisms, using viral isolates 

well characterized at genome level (naturally obtained or experimentally manipulated), may open 

new insights for the manipulation of immune responses towards the stimulation of protective 

mechanisms thus contributing to the development of efficient vaccines. 

Epidemiological models could help to choose the best control strategy and to identify risk areas for 

targeted surveillance, improving prevention, or to optimize resource allocation for control purposes. 
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Annex 1. Date, location and brief description of historical ASF introductions from East and 

Southern African countries (according to scientific papers published and official reports from FAO 

and OIE) 

 

Country Date Description Source 

Guinea-

Bissau 1958 

No information on the first introduction but enzootic 

situation suspected since this date Sarr 1990 

Senegal 

 

 

 

 

 

 

 

 

1959 

Introduction in Dakar in traditional farms - suspected source: 

Guinea-Bissau by pig trade from Casamance Sarr 1990 

Since 

1959 

No official reports but spread to all pig production areas - 

chronic form with pig carriers 

Gilbert & 

Memery (nd) 

1978 First official report but already present  FAO 1998a 

1986-

1989 

Numerous outbreaks annually in Ziguinchor, Fatick, Thies 

and Dakar 

 

Sarr 1990 

 

1996-

2005 

1-5 outbreaks/year reported in Casamance, Sine-Saloum and 

Thies regions, Official report only when infected 

commercial farms FAO 1998a 

Nigeria 

 

 

 

 

 

 

1973 First report FAO 1998a 

1997 Introduction in Lagos and Ogun states - source: Benin  FAO 1998a 

1998 

Spread to Benue region in big commercial farms (<60000 

pigs died) FAO 1998d 

2001 

 

Outbreak at the University‟s Teaching and Research Farm 

and other parts of Ibadan city – Source unknown or re-

emergence? 

Babalobi 

2003 

 

Sudan 

 1978 2 outbreaks 

Sanchez 

Botija 1982 

Sao Tome 1979 1 outbreak in a farm close to farms receiving pork meat from Sanchez 
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& Principe Angola (7000 pigs died or slaughtered) – no information on 

potential spread 

Botija 1982 

Cape Verde 

 

 

 

 

1980 First report in Santiago island FAO 1998b 

1985 

Introduction and then enzootic in at least islands of Maio and 

Santiago with peaks of morbidity/mortality twice a year in 

spring and winter FAO 1998c 

1998 Peak particularly devastating  FAO 1998c 

Cameroon 

 1982 

50% of pig population died, stamping out policy leading to 

pig breeding given up for small pig holders who never 

restock - suspected source: Europe - spread to become 

enzootic with sporadic outbreaks annually FAO 1998a 

Chad 

 

1983-

1985 Outbreaks related to Cameroon 

Sanchez 

Botija 1982 

Ivory Coast 

 

 1996 

Agban escarpements and then spread to traditional farms in 

Adidjan - source: infected meat from Agban - 22 000 pigs 

died & 100 000 pigs slaughtered (=25%) FAO 1997 

Benin 

 

 

 

 

 

 

1997-

1999 

Introduction in the Hindé neighborhood of the Nokoué lake 

and in the international market of Dantokpa in Cotonou, 

1781 outbreaks mainly in southern and central areas of 

Atlantique, Mono, Ouémé and Zou (350 000 pigs died, 42 

000 pigs slaughtered = 50%) 

FAO 1998a, 

Ayissiwebe 

2004 

2000 Reemergence with 51 outbreaks in the same 4 departments 

Ayissiwebe 

2004 

2001 

Spread to Natitingou and Parakou departments with 47 

outbreaks 

Ayissiwebe 

2004 

Togo 

 1997 

Introduction from the border of Benin and spread to southern 

areas (4000-5000 pigs died, 2500 pigs slaughtered) FAO 1998a 
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 1998 

Spread to Lomé and Kara (crossroad for Benin, Ghana and 

Burkina Faso) FAO 1998a 

2002 1 suspected outbreak in Bassar district near the boarder with Ghana 

Ghana 

1999 

Introduction and spread to Dangme East district in Greater 

Accra region, Awutu Efutu Senya district in Central region 

& Ho and South Tongu in Volta region (600 pigs died 6927 

pigs slaughtered) FAO 2000 

2002 

Reemergence in Zabzugu district - suspected source: Togo - 

virus extremely virulent causing complete depopulation in 

pigs FAO 2002 

Gambia 

 

 2000 

Outbreaks  in Greater Banjul area and Western Division & 

spread to North Bank and Lower and Upper River Divisions 

(8511 pigs died out of 10 291 cases in 38 foci throughout the 

country except Lower River Division) FAO 2001 

Burkina 

Faso 

 

2003-

2005 

Kompienga region near the boarder with Togo and Benin, 

spread to the Cantral region in Kadiogo district (90% of pigs 

died in Kadiogo), spread to Southern-Central region and 

Central escarpments 

Rey-Herme 

2004, OIE 

2005 

Madagascar 

 

 

 

1997 

 

 

First introduction from the eastern coast of the African 

continent to the southern part of the island and spread to the 

other regions except the north and the west 

Rousset 

2001 

 

 

Since 

1998 

Several outbreaks reported in the whole country suggesting 

enzootic situation but large under-reporting  

 

 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 107 
 

REFERENCES 

 

 
1. (1967). "[Meeting for consultation and information of the O.I.E. (Office International des 

Epizooties) on African swine fever: Paris, 19-20 April, 1967]." Bull Off Int Epizoot 67(7): 

999-1028. 

2. Afonso, C.L., Alcaraz, C., Brun, A., Sussman, M.D., Onisk, D.V., Escribano, J.M., Rock, 

D.L., 1992. Characterization of p30, a highly antigenic membrane and secreted protein of 

African swine fever virus. Virology 189, 368-373. 

3. Afonso, C.L., Neilan, J.G., Kutish, G.F., Rock, D.L., 1996. An African swine fever virus 

Bc1-2 homolog, 5-HL, suppresses apoptotic cell death. J Virol 70, 4858-4863. 

4. Afonso, C.L., Piccone, M.E., Zaffuto, K.M., Neilan, J., Kutish, G.F., Lu, Z., Balinsky, C.A., 

Gibb, T.R., Bean, T.J., Zsak, L., Rock, D.L., 2004. African swine fever virus multigene 

family 360 and 530 genes affect host interferon response. J Virol 78, 1858-1864. 

5. Aguero, M., Fernandez, J., Romero, L., Sanchez Mascaraque, C., Arias, M., Sanchez-

Vizcaino, J.M., 2003. Highly sensitive PCR assay for routine diagnosis of African swine 

fever virus in clinical samples. J Clin Microbiol 41, 4431-4434. 

6. Aguero, M., Fernandez, J., Romero, L.J., Zamora, M.J., Sanchez, C., Belak, S., Arias, M., 

Sanchez-Vizcaino, J.M., 2004. A highly sensitive and specific gel-based multiplex RT-PCR 

assay for the simultaneous and differential diagnosis of African swine fever and Classical 

swine fever in clinical samples. Vet Res 35, 551-563. 

7. Alcami, A., Carrascosa, A.L., Vinuela, E., 1989. The entry of African swine fever virus into 

Vero cells. Virology 171, 68-75. 

8. Alcami, A., Angulo, A., Lopez-Otin, C., Munoz, M., Freije, J.M., Carrascosa, A.L., Vinuela, 

E., 1992. Amino acid sequence and structural properties of protein p12, an African swine 

fever virus attachment protein. J Virol 66, 3860-3868. 

9. Alejo, A., Andres, G., Salas, M.L., 2003. African swine fever virus proteinase is essential 

for core maturation and infectivity. J Virol 77, 5571-5577. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 108 
 

10. Alfonso, P., Rivera, J., Hernaez, B., Alonso, C., Escribano, J.M., 2004. Identification of 

cellular proteins modified in response to African swine fever virus infection by proteomics. 

Proteomics 4, 2037-2046. 

11. Allaway, E.C., Chinombo, D.O., Edelsten, R.M., Hutchings, G.H., Sumption, K.J., 1995. 

Serological study of pigs for antibody against African swine fever virus in two areas of 

southern Malawi. Rev Sci Tech 14, 667-676. 

12. Almazan, F., Rodriguez, J.M., Andres, G., Perez, R., Vinuela, E., Rodriguez, J.F., 1992. 

Transcriptional analysis of multigene family 110 of African swine fever virus. J Virol 66, 

6655-6667. 

13. Almazan, F., Rodriguez, J.M., Angulo, A., Vinuela, E., Rodriguez, J.F., 1993. 

Transcriptional mapping of a late gene coding for the p12 attachment protein of African 

swine fever virus. J Virol 67, 553-556. 

14. Almendral, J.M., Almazán, F., Blasco, R. and Viñuela, E., 1990. Multigene families in 

African swine fever virus: family 110. J Virol, 64, 2064-2072.  

15. Alonso, F., Dominguez, J., Vinuela, E., Revilla, Y., 1997. African swine fever virus-specific 

cytotoxic T lymphocytes recognize the 32 kDa immediate early protein (vp32). Virus Res 

49, 123-130. 

16. Alonso, C., Miskin, J., Hernaez, B., Fernandez-Zapatero, P., Soto, L., Canto, C., Rodriguez-

Crespo, I., Dixon, L., Escribano, J.M., 2001. African swine fever virus protein p54 interacts 

with the microtubular motor complex through direct binding to light-chain dynein. J Virol 

75, 9819-9827. 

17. Anderson, E.C., Hutchings, G.H., Mukarati, N., Wilkinson, P.J., 1998. African swine fever 

virus infection of the bushpig (Potamochoerus porcus) and its significance in the 

epidemiology of the disease. Vet Microbiol 62, 1-15. 

18. Andres, G., Garcia-Escudero, R., Salas, M.L., Rodriguez, J.M., 2002. Repression of African 

swine fever virus polyprotein pp220-encoding gene leads to the assembly of icosahedral 

core-less particles. J Virol 76, 2654-2666. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 109 
 

19. Andres, G., Garcia-Escudero, R., Simon-Mateo, C., Vinuela, E., 1998. African swine fever 

virus is enveloped by a two-membraned collapsed cisterna derived from the endoplasmic 

reticulum. J Virol72, 8988-9001. 

20. Andres, G., Garcia-Escudero, R., Vinuela, E., Salas, M.L., Rodriguez, J.M., 2001. African 

swine fever virus structural protein pE120R is essential for virus transport from assembly 

sites to plasma membrane but not for infectivity. J Virol 75, 6758-6768. 

21. Andres, G., Simon-Mateo, C., Vinuela, E., 1997. Assembly of African swine fever virus: 

role of polyprotein pp220. J Virol 71, 2331-2341. 

22. Angulo, A., Vinuela, E., Alcami, A., 1993. Inhibition of African swine fever virus binding 

and infectivity by purified recombinant virus attachment protein p12. J Virol 67, 5463-5471. 

23. Arias M, Sánchez-Vizcaíno JM, 1992. Manual de diagnóstico serológico de la peste porcina 

africana. Monografías INIA 83:5-44. 

24. Arias, M., Sanchez-Vizcaino, J.M., 2002a. African swine fever eradication: The Spanish 

model. Trends in Emerging Viral Infections of Swine, 133-139. 

25. Arias, M., Sanchez-Vizcaino, J.M., 2002b. African swine fever. Trends in Emerging Viral 

Infections of Swine, 119-124. 

26. Arzuza, O., Urzainqui, A., Diaz-Ruiz, J.R., Tabares, E., 1992. Morphogenesis of African 

swine fever virus in monkey kidney cells after reversible inhibition of replication by 

cycloheximide. Arch Virol 124, 343-354. 

27. Astigarraga, A., Oleaga-Perez, A., Perez-Sanchez, R., Encinas-Grandes, A., 1995. A study 

of the vaccinal value of various extracts of concealed antigens and salivary gland extracts 

against Ornithodoros erraticus and Ornithodoros moubata. Vet Parasitol 60, 133-147. 

28. Astigarraga, A., Oleaga-Perez, A., Perez-Sanchez, R., Baranda, J.A., Encinas-Grandes, A., 

1997. Host immune response evasion strategies in Ornithodoros erraticus and O. moubata 

and their relationship to the development of an antiargasid vaccine. Parasite Immuno. 19, 

401-410. 

29. Ayissiwebe, S.B., 2004. La filière porcine au Bénin: production, commercialisation, 

propositions d‟amélioration et perspectives de développement. Thèse : Méd. Vét. : Dakar. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 110 
 

30. Babalobi, O.O., Ayoade, G.O., Olugasa, B.O., Oluwayelu, D.O., Oyedela, O., 2003. 

Differential diagnosis of a swine epizootic of unknown etiology in Ibadan, Oyo State, 

Nigeria. Israel Veterinary Medical Association 58 (2-3). Available at 

http://www.isrvma.org/article/58_2-3.htm 

31. Babalobi, O.O., Olugasa, B.O., Oluwayelu, D.O., Ijagbone, I.F., Ayoade, G.O., Agbede, 

S.A., 2007. Analysis and evaluation of mortality losses of the 2001 African swine fever 

outbreak, Ibadan, Nigeria. Trop Anim Health Prod 39, 533-542. 

32. Baeuerle, P.A., Henkel, T., 1994. Function and activation of NF-kappa B in the immune 

system. Ann Rev Immunol 12, 141-179. 

33. Baptista, A.R., Mendes, A.M., 1954. Estudo Imunológico Sobre Peste Suina em Angola. 

Anais Serv. Vet. 5-31. 

34. Barnes, D.E., Lindhal, T., Sedgwick, B., 1993. DNA repair. Curr. Opin. Cell. Boil. 5, 424-

433. 

35. Basto, A.P., Portugal, R.S., Nix, R.J., Cartaxeiro, C., Boinas, F., Dixon, L.K., Leitao, A., 

Martins, C., 2006. Development of a nested PCR and its internal control for the detection of 

African swine fever virus (ASFV) in Ornithodoros erraticus. Arch Virol 151, 819-826. 

36. Bastos, A.D., Penright, M.L., Cricière, C., Edrich, J.L., Hutchings, G., Roger, F., Couacy-

Hymann E.R., Thomson G., 2003. Genotyping field isolates of African swine fever virus by 

partial p72 gene characterisation. Arch Virol 148(4):693-706. 

37. Bastos, A.D.S., Penrith M.L., Macome F., Pinto F., Thomson G.R., 2004. Co-circulation of 

two genetically distinct viruses in an outbreak of African swine fever in Mozambique: no 

evidence for individual co-infection. Vet Microbiol 103: 169-182. 

38. Bech-Nielsen, S., Fernandez, J., Martinez-Pereda, F., Espinosa, J., Perez Bonilla, Q., and 

Sanchez-Vizcaino, J. M., 1995. A case study of an outbreak of African swine fever in Spain. 

Br Vet J 151, 203-214. 

39. Bedford, G.A.H., 1934. South African Ticks. Part I. Onderstepoort J Vet Sci. 2: 49. 

40. Beltrán-Alcrudo, D., Lubroth, J., Depner, K., La Rocque, S. 2008. African swine fever in the 

Caucasus. FAO EMPRES (Emergency Prevention Systems) WATCH. 1-8. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 111 
 

41. Benedict, C.A., Norris, P.S., Ware, C.F., 2002. To kill or be killed: viral evasion of 

apoptosis. Nat Immunol 3, 1013-1018. 

42. Bengis, R.G., Veary, C.M., 1997. Public health risks associated with the utilisation of 

wildlife products in certain regions of Africa. Rev Sci Tech 16, 586-593. 

43. Biront, P., Castryck, F., Leunen, J., 1987. An epizootic of African swine fever in Belgium 

and its eradication. Vet Rec 120, 432-434. 

44. Blasco, R., Aguero, M., Almendral, J.M., Vinuela, E., 1989. Variable and constant regions 

in African swine fever virus DNA. Virol 168, 330-338. 

45. Blasco, R., de la Vega, I., Almazan, F., Aguero, M., Vinuela, E., 1989. Genetic variation of 

African swine fever virus: variable regions near the ends of the viral DNA. Virology 173, 

251-257. 

46. Boinas, F., 1995. The role of Ornithodoros erraticus in the epidemiology of African swine 

fever in Portugal. Reading, University of Reading. PhD: 240. 

47. Boinas, F.S., Hutchings, G.H., Dixon, L.K., Wilkinson, P.J., 2004. Characterization of 

pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros 

erraticus inhabiting pig premises in Portugal. J Gen Virol 85, 2177-2187. 

48. Bool, P.H., Ordas, A., Sanchez Botija, C, 1969. The diagnosis of African swine fever by 

immunofluorescence. Bul Off Int Epizoot 72:819-839. 

49. Borca, M.V., Irusta, P., Carrillo, C., Afonso, C.L., Burrage, T., Rock, D.L., 1994. African 

swine fever virus structural protein p72 contains a conformational neutralizing epitope. 

Virology 201, 413-418. 

50. Borca, M.V., Carrillo, C., Zsak, L., Laegreid, W.W., Kutish, G.F., Neilan, J.G., Burrage, 

T.G., Rock, D.L., 1998. Deletion of a CD2-like gene, 8-DR, from African swine fever virus 

affects viral infection in domestic swine. J Virol 72, 2881-2889. 

51. Boschoff, C.I., Bastos, A.D., Gerber, L.J., Vosloo, W., 2007. Genetic characterisation of 

African swine fever viruses from outbreaks in southern Africa (1973-1999). Vet Microbiol 

121(1-2):45-55. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 112 
 

52. Brookes, S.M., Dixon, L.K., Parkhouse, R.M., 1996. Assembly of African swine fever virus: 

quantitative ultrastructural analysis in vitro and in vivo. Virology 224, 84-92. 

53. Bulimo, W.D., Miskin, J.E., Dixon, L.K., 2000. An ARID family protein binds to the 

African swine fever virus encoded ubiquitin conjugating enzyme, UBCv1. FEBS letters 471, 

17-22. 

54. Burrage, T.G., Lu, Z., Neilan, J.G., Rock, D.L., Zsak, L. African swine fever virus 

multigene family 360 genes affect virus replication and generalization of infection in 

Ornithodoros porcinus ticks. J Virol 2004 Mar; 78(5):2445-53. 

55. Caeiro, V., 1999. "General review of tick species present in Portugal." Parassitologia 41 

Suppl 1: 11-5. 

56. Caiado, J.M., Boinas, J.M., Louza, A.C., 1988. Epidemiological research of African Swine 

Fever (ASF) in Portugal: the role of vectors and virus reservoirs. Acta Vet Scand Suppl 

84:136-8. 

57. Caiado, J.M., Boinas, F.S., Melo, M.A., Louzã, A.C., 1990. The use of Carbon Dioxide 

insect traps for the collection of Ornithodoros erraticus on African swine fever infected 

farms. Prev Vet Med 8, 55-59. 

58. Canals, A., Oleaga, A., Perez, R., Dominguez, J., Encinas, A., Sanchez-Vizcaino, J.M., 

1990, Evaluation of an enzyme-linked immunosorbent assay to detect specific antibodies in 

pigs infested with the tick Ornithodoros erraticus (Argasidae). Vet Parasitol 37, 145-

153.Carvalho Dias, C., 1933. Sobre a existência em Portugal do espiroqueta da febre catarral 

de Espanha. Lisboa Méd. 7: 428-430. 

59. Carrasco, L., Fernandez, A., Gomez Villamandos, J.C., Mozos, E., Mendez, A., Jover, A., 

1992. Kupffer cells and PIMs in acute experimental African swine fever. Histol Histopathol 

7, 421-425. 

60. Carrascosa, A.L., Santaren, J.F., Vinuela, E., 1982. Production and titration of African swine 

fever virus in porcine alveolar macrophages. J Virol Methods 3, 303-310. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 113 
 

61. Carrascosa, J.L., Carazo, J.M., Carrascosa, A.L., Garcia, N., Santisteban, A., Vinuela, E., 

1984. General morphology and capsid fine structure of African swine fever virus particles. 

Virology 132, 160-172. 

62. Carrascosa, A.L., del Val, M., Santaren, J.F., Vinuela, E., 1985. Purification and properties 

of African swine fever virus. J Virol 54, 337-344. 

63. Carvalho, Z.G., De Matos, A.P., Rodrigues-Pousada, C., 1988. Association of African swine 

fever virus with the cytoskeleton. Virus Res 11, 175-192. 

64. Casal, I., Enjuanes, L., Vinuela, E., 1984. Porcine leukocyte cellular subsets sensitive to 

African swine fever virus in vitro. J Virol 52, 37-46. 

65. CEC, 1992.Council Directive of 17 December 1992 introducing general Community 

measures for the control of certain animal disease and specific measures relating to swine 

vesicular disease (92/119/EEC). Off J Europ Comm. L 62, p.69. 

66. CEC, 2002. Council Directive laying down specific provisions for the control of African 

swine fever (2002/60/EC). Off J Europ Comm. L 192, pp.27-46. 

67. CEC, 2005. Commission Decision of 2 May 2005 approving the plan for the eradication of 

African swine fever in feral pigs in Sardinia, Italy (2005/3627EC). Off J Europ Comm, 

notified under document number C (2005) 1255. 

68. Chabaud, A., 1954. L'Ornithodorus erraticus (Lucas 1849): multiplicité des races. Bull Soc 

Pathol Exot XXIV, 89-130. 

69. Chapman, D.A., Tcherepanov, V., Upton, C., Dixon, L.K., 2008. Comparison of the genome 

sequences of non-pathogenic and pathogenic African swine fever virus isolates. J Gen Virol 

89, 397-408. 

70. Clipstone, N.A. and Crabtree, G.R. (1992). Identification of calcineurin as a key signalling 

enzyme in lymphocyte-T activation. Nature 357, 695-697. 

71. Cobbold, C., Wileman, T., 1998. The major structural protein of African swine fever virus, 

p73, is packaged into large structures, indicative of viral capsid or matrix precursors, on the 

endoplasmic reticulum. J Virol 72, 5215-5223. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 114 
 

72. Cobbold, C., Windsor, M., Wileman, T., 2001. A virally encoded chaperone specialized for 

folding of the major capsid protein of African swine fever virus. J Virol75, 7221-7229. 

73. Coggins, L., 1974. African swine fever virus. Pathogenesis. Progress in medical virology. 

Prog Med Virol 18, 48-63. 

74. Cooley, R.A., 1942. Determination of ornithodoros species. Prof Ethics Rep 18: 77-84. 

75. Crabtree, G.R. and Olson, E.N., 2002. NFAT signalling: Choreographing the social live 

cells. Cell 109, 567-579. 

76. Cunha, C.V., Costa, J.V., 1992. Induction of ribonucleotide reductase activity in cells 

infected with African swine fever virus. Virology 187, 73-83. 

77. Cunliffe, H.R., Blackwell, J.H., Walker, J.S., 1979. Glutaraldehyde inactivation of exotic 

animal viruses in swine heart tissue. Appl Environ Microbiol 37, 1044-1046. 

78. Curtin, N.J., Harris, A.L., Aherne, G.W., 1991. Mechanism of cell death following 

thymidylate synthase inhibition: 2‟-deoxyuridine-5‟triphosphate accumulation, DNA 

damage, and growth inhibition following exposure to CB3717 and dipyridamole. Cancer 

Res 51, 2346-2352.  

79. De Kock, G., Robbinson, E.M., Keppel, J.J.G., 1940. Swine fever in South Africa. 

Onderstepoort J Vet Sci Animal md. 14: 31-93. 

80. De la Vega, I., Gonzalez, A., Blasco, R., Calvo, V., Vinuela, E., 1994. Nucleotide sequence 

and variability of the inverted terminal repetitions of African swine fever virus DNA. 

Virology 201, 152-156. 

81. De la Vega, I., Vinuela, E., Blasco, R., 1990. Genetic variation and multigene families in 

African swine fever virus. Virology 179, 234-246. 

82. De Tray, D.E., 1963. African swine fever. Adv Vet Sci 8:299-333. 

83. De Tray, D.E., 2008. African swine fever. Adv Vet Sci 8, 299-333. 

84. Deboer, C.J., 1967. Studies to Determine Neutralizing Antibody in Sera from Animals 

Recovered from African swine fever and Laboratory Animals Inoculated with African Virus 

with Adjuvants. Arch Gesamte Virusforsch 20, 164-&. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 115 
 

85. Deboer, C.J., Hess, W.R., Dardiri, A.H., 1969. Studies to Determine Presence of 

Neutralizing Antibody in Sera and Kidneys from Swine Recovered from African swine 

fever. Arch Gesamte Virusforsch 27, 44-&. 

86. Defra Food and Farming Group, 2007 - African swine fever-Mauritius. 

http://www.defra.gov.uk/animalh/diseases/monitoring/pdf/asf-mauritius231007.pdf 

87. d'Huart, J. P. 2008. The Forest Hog. In 'Pigs, Peccaries and Hippos Status Survey and 

Action Plan.‟ (Ed. W. L. B. Oliver.) pp. 84-92. (IUCN: Gland, Switzerland.) 

88. Dixon, L.K., Wilkinson, P.J. 1988. Genetic diversity of African swine fever virus isolates 

from soft ticks (Ornithodoros moubata) inhabiting warthog burrows in Zambia. J Gen Virol 

Dec; 69 (Pt 12):2981-93. 

89. Dixon, L.K., Twigg, S.R., Baylis, S.A., Vydelingum, S., Bristow, C., Hammond, J.M., 

Smith, G.L., 1994. Nucleotide sequence of a 55 kbp region from the right end of the genome 

of a pathogenic African swine fever virus isolate (Malawi LIL20/1). J Gen Virol 75 (Pt 7), 

1655-1684. 

90. Dixon, L.K., Escribano, J.M., Martins, C., Rock, D.L., Salas, M.L., Wilkinson, P.J., 2005. 

In: Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., Ball, L.A. (Eds.), Virus 

Taxonomy. VIII. Report of the ICTV. Elsevier/Academic Press, London, pp. 135–143 

91. Domenech, J., Lubroth, J., Eddi, C., Martin, V., Roger, F., 2006. Regional and international 

approaches on prevention and control of animal transboundary and emerging diseases. Ann 

N Y Acad Sci 1081, 90-107. 

92. Edelsten, R.M., Chinombo, D.O., 1995. An outbreak of African swine fever in the southern 

region of Malawi. Rev Sci Tech 14, 655-666. 

93. Edwards, J.F., Dodds, W.J., Slauson, D.O. 1985. Mechanism of thrombocytopenia in 

African swine fever. Am J Vet Res 46 (10): 2058-2063. 

94. Ekue, N.F., Wilkinson, P.J., Wardley, R.C., 1989. Infection of pigs with the Cameroon 

isolate (Cam/82) of African swine fever virus. J Comp Path 100: 145-153. 

http://www.defra.gov.uk/animalh/diseases/monitoring/pdf/asf-mauritius231007.pdf


 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 116 
 

95. el Hicheri, K., Gomez-Tejedor, C., Penrith, M.L., Davies, G., Douati, A., Edoukou G.J., 

Wojciechowski K., 1998. [The 1996 epizootic of African swine fever in the Ivory Coast]. 

Rev Sci Tech 17, 660-673. 

96. el Shoura, S. M.,1987. The life cycle of Ornithodoros (Pavlovskyella) erraticus (Acari: 

Ixodoidea: Argasidae) in the laboratory." J Med Entomol 24(2): 229-34. 

97. Encinas Grandes, A., Oleaga Perez, A., Perez Sanchez R., Astirraga, A., 1993. Datos sobre 

el reservorio y vector de la peste porcina Africana, Ornithodoros erraticus. Anaporc 121, 

38-47.  

98. Enjuanes, L., Cubero, I., Vinuela, E., 1977. Sensitivity of macrophages from different 

species to African swine fever (ASF) virus. J Gen Virol 34, 455-463. 

99. Epifano, C., Krijnse-Locker, J., Salas, M.L., Salas, J., Rodriguez, J.M., 2006. Generation of 

filamentous instead of icosahedral particles by repression of African swine fever virus 

structural protein pB438L. J Virol 80, 11456-11466. 

100. Escribano, J.M., Pastor, M.J., Arias, M., Sanchez-Vizcaino, J.M., 1990. 

Confirmación de sueros positivos a ELISA-peste porcina africana, mediante la técnica de 

„Immunoblotting‟. Utilización de las proteínas inducidas por el virus cone pesosmoleculares 

comprendidos entre 23 y 35 kilodaltons, en el desarrollo de un „kit‟ de diagnóstico. 

(Confirmation of sera positive by ASF ELISA with the immunoblotting technique. Use of 

virus-induced proteins of 23–25 kDa in the development of a diagnostic kit.) Med Vet 7, 

135–141. 

101. Escribano, J.M., Alcaraz, R.F., Ruiz-Gonzalvo, F., 1993. New perspectives in 

African swine fever vírus protection. . African swine fever. A. Galo, CEC, EUR 14209 EN. 

102. Esteves, A., Marques, M.I., Costa, J.V., 1986. Two-dimensional analysis of African 

swine fever virus proteins and proteins induced in infected cells. Virol 152, 192-206. 

103. Estrada-Pena, A., Ed. 2000. Ixodoidea (Acarina) en la Península Ibérica. Barcelona, 

Edigraf. 

104. Eulalio, A., Nunes-Correia, I., Carvalho, A.L., Faro, C., Citovsky, V., Simoes, S., 

Pedroso de Lima, M.C., 2004. Two African swine fever virus proteins derived from a 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 117 
 

common precursor exhibit different nucleocytoplasmic transport activities. J Virol 78, 9731-

9739. 

105. FAO 1998a. African swine fever in West Africa: Togo, Senegal, Gambia and 

Guinea-Bissau. [French] Mission report from 1 to 16 June 1998. Available on 

http://www.fao.org/docrep/field/382969.htm 

106. FAO 1998b. Control and eradication of the African Swine Fever epizootic in 

Republic of Cape Verde. TCP/CVI/8823. Available on 

http://www.fao.org/docrep/field/382977.htm 

107. FAO 1998c. Major outbreak of African swine fever threatens food security in Cape 

Verde. News & Highlights. April 1998. Available on 

http://www.fao.org/NEWS/1998/980404-e.htm 

108. FOA 1998d. African swine fever in Nigeria hits rural poor. News & Highlights. 

December 1998. Available on http://www.fao.org/NEWS/1998/981201-e.htm 

109. Farez, S., Morley, R.S., 1997. Potential animal health hazards of pork and pork 

products. Rev Sci Tech 16, 65-78. 

110. Fernandez, A., Pérez, J., Carrasco, L., Bautista, M.J., Sanchez-Vizcaino, J.M., Sierra, 

M.A., 1992. Distribution of ASFV antigens in pig tissues experimentally infected with two 

different Spanish virus isolates. J Vet Med (B) 39, 393-402. 

111. Fernandez, A., Perez, J., Carrasco, L., Sierra, M.A., Sanchez-Vizcaino, J.M., Jover, 

A., 1992. Detection of African swine fever viral antigens in paraffin-embedded tissues by 

use of immunohistologic methods and polyclonal antibodies. Am J Vet Res 53, 1462-1467. 

112. Fernandez Garcia, J. M., 1970. Aportaciones al conocimiento da la biologia de 

Ornithodoros erraticus (Lucas, 1849). Anales de la Facultad de Veterinaria de Leon 16: 195-

208. 

113. Fukunaga, M., Ushijima, Y., Auki, Y., Talbert A., 2001. Detection of Borrelia 

duttonii, a Tick-Borne Relapsing Fever Agent in Central Tanzania, Within Ticks by 

Flagellin Gene-Based Nested Polymerase Chain Reaction. Vector Borne and Zoonotic Dis 

1, 331-338. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 118 
 

114. Gallardo, C., Blanco, E., Rodriguez, J.M., Carrascosa, A.L., Sanchez-Vizcaino, J.M., 

2006. Antigenic properties and diagnostic potential of African swine fever virus protein 

pp62 expressed in insect cells. J Clin Microbiol 44, 950-956. 

115. Garcia-Beato, R., Salas, M.L., Vinuela, E., Salas, J., 1992. Role of the host cell 

nucleus in the replication of African swine fever virus DNA. Virology 188, 637-649. 

116. Garcίa-Escudero, R., Andrés, G., Almazán, F. and Viñuela, E., 1997. Inducible gene 

expression from African swine fever virus recombinants: analysis of the major capsid 

protein p72. J Virol 72, 3185-3195. 

117. Genovesi, E.V., Knudsen, R.C., Whyard, T.C., Mebus, C.A., 1988. Moderately 

virulent African swine fever virus-infection - blood-cell changes and infective virus 

distribution among blood components. Am J Vet Res 49, 338-344. 

118. Ghosh, S., May, M.J., Koop, E.B., 1998. NF-kappa-B and related proteins: 

evolutionarily conserved mediators of immune responses. An. Rev. Immunology 16, 225-

260. 

119. Ghosh, S. and Karin, M., 2002. Missing pieces in the NF-kappa-B puzzle. Cell 109, 

581-596. 

120. Gil, S., Spagnuolo-Weaver, M., Canals, A., Sepulveda, N., Oliveira, J., Aleixo, A., 

Allan, G., Leitao, A., Martins, C.L.V., 2003. Expression at mRNA level of cytokines and 

A238L gene in porcine blood-derived macrophages infected in vitro with African swine 

fever virus (ASFV) isolates of different virulence. Arch Virol 148, 2077-2097. 

121. Gil, S., Sepulveda, N., Albina, E., Leitao, A., Martins, C., 2008. The low-virulent 

African swine fever virus (ASFV/NH/P68) induces enhanced expression and production of 

relevant regulatory cytokines (IFNalpha, TNFalpha and IL12p40) on porcine macrophages 

in comparison to the highly virulent ASFV/L60. Arch Virol (in press). 

122. Gil Collado, J., 1948. Acaros Ixodoideos de España. Rev Sanid Hig Publica (Madr). 

22: 388-439.  



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 119 
 

123. Goatley, L.C., Twigg, S.R., Miskin, J.E., Monaghan, P., St-Arnaud, R., Smith, G.L., 

Dixon, L.K., 2002. The African swine fever virus protein j4R binds to the alpha chain of 

nascent polypeptide-associated complex. J Virol 76, 9991-9999. 

124. Gomez-Puertas, P., Oviedo, J.M., Rodriguez, F., Coll, J., Escribano, J.M., 1997. 

Neutralization susceptibility of African swine fever virus is dependent on the phospholipid 

composition of viral particles. Virology 228, 180-189. 

125. Gomez-Puertas, P., Rodriguez, F., Oviedo, J.M., Brun, A., Alonso, C., Escribano, 

J.M., 1998. The African swine fever virus proteins p54 and p30 are involved in two distinct 

steps of virus attachment and both contribute to the antibody-mediated protective immune 

response. Virology 243, 461-471. 

126. Gomez-Villamandos, J.C., Hervas, J., Mendez, A., Carrasco, L., Villeda, C.J., 

Wilkinson, P.J., Sierra, M.A., 1995a. Ultrastructural study of the renal tubular system in 

acute experimental African swine fever: virus replication in glomerular mesangial cells and 

in the collecting ducts. Arch Virol 140, 581-589. 

127. Gomez-Villamandos, J.C., Hervas, J., Mendez, A., Carrasco, L., Villeda, C.J., 

Wilkinson, P.J., Sierra, M.A., 1995b. Pathological changes in the renal interstitial capillaries 

of pigs inoculated with two different strains of African swine fever virus. Journal of 

comparative pathology 112, 283-298. 

128. Gomez-Villamandos, J.C., Hervas, J., Mendez, A., Carrasco, L., Martin de las Mulas, 

J., Villeda, C.J., Wilkinson, P.J., Sierra, M.A., 1995c. Experimental African swine fever: 

apoptosis of lymphocytes and virus replication in other cells. J Gen Virol 76 (Pt 9), 2399-

2405.  

129. Gonzales, A., Talavera, A., Almendral, J.M. and Vinuela, E., 1986. Hairpin loop 

structure of African swine fever virus-DNA. Nucleic Acids Res 14, 6835-6844.  

130. Gonzalez A., Calvo V., Almazán F., Almendral J.M., Ramirez J.C., De la Vega I., 

Blasco R., Viñuela E., 1990. Multigene families in African swine fever virus. Family 360. J 

Virol 34, 2073-2081. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 120 
 

131. Gonzalez Juarrero, M., Mebus, C.A., Pan, R., Revilla, Y., Alonso, J.M., Lunney, 

J.K., 1992. Swine leukocyte antigen and macrophage marker expression on both African 

swine fever virus-infected and non-infected primary porcine macrophage cultures. Vet 

Immunol Immunopathol 32, 243-259. 

132. Graef, I.A., Chen, F., Chen, L., Kuo, A. and Crabtree, G.R. (2003). Signals 

transduced by Ca2+/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell 

105, 863-875. 

133. Granja, A.G., Nodal, M.L., Hurtado, C., Vila, V., Carrascosa, A.L., Salas, M.L., 

Fresno, M., Revilla, Y., 2004. The viral protein A238L inhibits cyclooxygenase-2 

expression through a nuclear factor of activated T cell-dependent transactivation pathway. J 

Biol Chem 279, 53736-53746. 

134. Greig A, Plowright W, 1970. The excretion of two virulent isolates of African swine 

fever virus by domestic pigs. J Hyg 68:673-682. 

135. Greig A, 1972. The localization of African swine fever virus in the tick Ornithodoros 

moubata porcinus. Arch Gesainte Virusforsch 29:240-247. 

136. Hamalainen, M., Lahti, A., Moilanen, E., 2002. Calcineurin inhibitors, cyclosporin A 

and tacrolimus inhibit expression of inducible nitric oxide synthase in colon epithelial and 

macrophage cell lines. Eur. J. Pharma. 448, 239-244.Hamblin, C., Anderson, E.C., Jago, M., 

Mlengeya, T., Hipji, K., 1990. Antibodies to some pathogenic agents in free-living wild 

species in Tanzania. Epidemiol Infect 105, 585-594.  

137. Hamdy, F.M., Dardiri, A.H., 1984. Clinical and immunologic responses of pigs to 

African swine fever virus isolated from the Western Hemisphere. Am J Vet Res 45, 711-

714.  

138. Haresnape, J.M., 1984. African swine fever in Malawi. Trop Anim Health Prod 16, 

123-125.  

139. Haresnape, J.M., Lungu, S.A., Mamu, F.D., 1985. A four-year survey of African 

swine fever in Malawi. J Hyg (Lond) 95, 309-323.  



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 121 
 

140. Haresnape J.M., Mamu F.D., 1986. The distribution of ticks of the Ornithodoros 

moubata complex (Ixodoidea: Argasidae) in Malawi, and its relation to African swine fever 

epizootiology. J Hyg (Lond) 96(3): 535-44.  

141. Haresnape, J.M., Lungu, S.A., Mamu, F.D., 1987. An updated survey of African 

swine fever in Malawi. Epidemiol Infect 99, 723-732.  

142. Haresnape J.M., Wilkinson P.J., Mellor P.S., 1988. Isolation of African swine fever 

virus from ticks of the Ornithodoros moubata complex (Ixodoidea: Argasidae) collected 

within the African swine fever enzootic area of Malawi. Epidemiol Infect 101(1): 173-85. 

143. Haresnape J.M., Wilkinson P.J., 1989. A study of African swine fever virus infected 

ticks (Ornithodoros moubata) collected from three villages in the ASF enzootic area of 

Malawi following an outbreak of the disease in domestic pigs. Epidemiol Infect 102(3): 507-

22. 

144. Hay, S. and Kannourakis, G. (2002). A time to kill: viral manipulation of the cell 

death program. J Gen Virol 83, 1547-1564. 

145. Heath, C.M., Windsor, M., Wileman, T., 2001. Aggresomes resemble sites 

specialized for virus assembly. J Cell Biol 153, 449-455.  

146. Hernaez, B., Escribano, J.M., Alonso, C., 2006. Visualization of the African swine 

fever virus infection in living cells by incorporation into the virus particle of green 

fluorescent protein-p54 membrane protein chimera. Virology 350, 1-14.  

147. Hess, W.R., Endris, R.G., Lousa, A., Caiado, J.M., 1989. Clearance of African swine 

fever virus from infected tick (Acari) colonies. J Med Entomol 26, 314-317.  

148. Heuschele W.P., Stone S.S., Coggins L., 1965. Observations on the epizootiology of 

African swine fever. Bull Epizoot Dis Afr 13: 157-160. 

149. Heuschele, W.P., Coggins, L., 1969. Epizootiology of African swine fever virus in 

warthogs. Bull Epizoot Dis Afr 17, 179-183.  

150. Hinnebusch J., Barbour A.G., 1991. Linear plasmids of Borrelia burgdorferi have a 

telomeric structure and sequence similar to those of a Eukaryotic virus. J Bacterol 173(22): 

7233-7239. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 122 
 

151. Hoogstraal H., Salah A.A., Kaiser M.N., 1954. Summary of the known distribution 

of Ornithodoros erraticus (Lucas, 1849) (Ixodidae, Argasidae) in Egypt. J Egypt Public 

Health Assoc XXIX, 127-138. 

152. Hoogstraal, H., 1985.Argasid and nuttalliellid ticks as parasites and vectors. Adv 

Parasitol 24: 135-238. 

153. Horak I. G., Biggs H. C., Hanssen T. S.,  Hanssen R. E. The prevalence of helminth 

and arthropod parasites of warthog Phacochoerus aethiopicus in South West 

Africa/Namibia. Onderstepoort J Vet Res 50, 145-148. 1983. 

154. Hurtado, C., Granja, A.G., Bustos, M.J., Nogal, M.L., Gonzalez de Buitrago, G., de 

Yebenes, V.G., Salas, M.L., Revilla, Y., Carrascosa, A.L., 2004. The C-type lectin 

homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus 

infection and in heterologous expression. Virology 326, 160-170.  

155. Impellizzeri, K.J., Anderson, B., Burgers, P.M., 1991. The spectrum of spontaneous 

mutations in a Saccharomyces cerevisiae uracil-DNA-glycosylase mutants limits the 

function of this enzyme to cytosine deamination repair. J  Bacteriol 177, 6807-

6810.Ingraham, H.A., Dickey, L., Goulian, M., 1986. DNA fragmentation and cytotoxicity 

from increased cellular deoxyuridylate. Biochemistry 25, 3225-3230. 

156. Iyer L.A., Balaji S., Koonin E.V., Aravind, L., 2006. Evolutionary genomics of 

nucleo-cytoplasmic large DNA viruses. Virus Res 117, 156-184. 

157. Jenson, J.S., Childerstone, A., Takamatsu, H., Dixon, L.K., Parkhouse, R.M., 2000. 

The cellular immune recognition of proteins expressed by an African swine fever virus 

random genomic library. J Immunol Methods 242, 33-42.  

158. Jin, L. and Harisson, S.C. (2002). Crystal structure of human calcineurin complexed 

with cyclosporine A and human cyclophilin. Proc Nat Ac Sc USA 99, 13522-13526 

159. Jori F., Vial L., Ravaonamanana J., Le Glaunec G., Etter E., Akakpo J., Sarr J., 

Costard S., Perez R., Roger F., 2007. The role of wild hosts (wild pigs and ticks) in the 

epidemiology of African swine fever in West Africa and Madagascar. In 'Proceedings of the 

12th International Conference of the Association of Institutions of Tropical Veterinary 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 123 
 

Medicine.‟ (E. Camus, E. Cardinale, C. Dalibard, D. Martinez, J. F. Renard, and F. 

RogerEds.) pp. 8-22. Montpellier, France. 

160. Jouvenet, N., Monaghan, P., Way, M., Wileman, T., 2004. Transport of African 

swine fever virus from assembly sites to the plasma membrane is dependent on microtubules 

and conventional kinesin. J Virol 78, 7990-8001.  

161. Kay-Jackson, P.C., Goatley, L.C., Cox, L., Miskin, J.E., Parkhouse, R.M., Wienands, 

J., Dixon, L.K., 2004. The CD2v protein of African swine fever virus interacts with the 

actin-binding adaptor protein SH3P7. J Gen Virol 85, 119-130.  

162. King, S.M., Dillman, J.F. 3rd, Benashski, S.E., Lye, R.J., Patel-King R.S., Pfister, 

K.K., 1996. The mouse t-complex-encoded protein Tctex-1 is a light chain of brain 

cytoplasmic dynein. J Biol Chem. 271(50), 32281-32287.  

163. King, D.P., Reid, S.M., Hutchings, G.H., Grierson, S.S., Wilkinson, P.J., Dixon, 

L.K., Bastos, A.D., Drew, T.W., 2003. Development of a TaqMan PCR assay with internal 

amplification control for the detection of African swine fever virus. J Virol Methods 107, 

53-61. 

164. Kingdon, J., 2003. The Kingdon field guide to African Mammals. (A&C Blackwell 

Publishers Ltd: London.) 

165. Kleiboeker, S.B, Burrage, T.G, Scoles, G.A, Fish, D., Rock, D.L., 1998. African 

swine fever virus infection in the Argasid host, Ornithodoros porcinus porcinus. J Virol 72 

(3): 1711-1724. 

166. Kleiboeker, S.B., Scoles, G.A., Burrage, T.G., Sur, J.H, 1999. African swine fever 

virus replication in the midgut epithelium is required for infection of Ornithodoros ticks. J 

Virol 73 (10): 8587-8598. 

167. Kornberg, A. and Baker, T.A., 1992. DNA replication, 2^nd ed. Freeman, San 

Francisco, Calif. 

168. Kovalenko, Y.R., 1965. Methods for infected pigs with African swine fever. Tr 

Vsesoiuznogo Inst Eksp Vet  31, 336-341. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 124 
 

169. Laddomada, A., Patta, C., Oggiano, A., Caccia, A., Ruiu, A., Cossu, P., and Firinu, 

A., 1994. Epidemiology of classical swine fever in Sardinia: a serological survey of wild 

boar and comparison with African swine fever. Vet Rec 134, 183-187. 

170. Le Glaunec, G., 2006. Etude épidémiologique du cycle sauvage de la Peste Porcine 

Africaine dans la région du Sine Saloum au Sénégal. . Montpellier, CIRAD: 59. 

171. Lefevre, P. C., 1998. African swine fever in West Africa: Togo, Senegal, Gambia, 

Guinea-Bissau, 1 - 16 June 1998. Consultancy Report, FAO: 14. 

172. Leitao, A., Cartaxeiro, C., Coelho, R., Cruz, B., Parkhouse, R.M.E., Portugal, F.C., 

Vigario, J.D., Martins, C.L.V., 2001. The non-haemadsorbing African swine fever virus 

isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune 

response. J Gen Virol 82, 513-523. 

173. Leitao, A., Malur, A., Cartaxeiro, C., Vasco, G., Cruz, B., Cornelis, P., Martins, 

C.L.V., 2000. Bacterial lipoprotein based expression vectors as tools for the characterisation 

of African swine fever virus (ASFV) antigens. Arch Virol 145, 1639-1657. 

174. Leitao, A., Malur, A., Cornelis, P., Martins, C.L.V., 1998. Identification of a 25-

aminoacid sequence from the major African swine fever virus structural protein VP72 

recognised by porcine cytotoxic T lymphocytes using a lipoprotein based expression system. 

J Virol Methods 75, 113-119. 

175. Lewis, T., Zsak, L., Burrage, T.G., Lu, Z., Kutish, G.F., Neilan, J.G., Rock, D.L., 

2000. An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation 

and viral growth in macrophages and viral virulence in swine. J Virol 74, 1275-1285. 

176. Lopez-Otin, C., Simon-Mateo, C., Martinez, L., Vinuela, E., 1989. Gly-Gly-X, a 

novel consensus sequence for the proteolytic processing of viral and cellular proteins. J Biol 

Chem 264, 9107-9110. 

177. Louza, A. C., Boinas, F. S., Caiado, J. M., and Vogario, J. D. and Hess W. R. Rôle 

des vecteurs et des réservoirs animaux dans la persistence de la Peste porcine africaine au 

Portugal. Epidémiologie et Santé Animale 15, 89-102. 1989. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 125 
 

178. Lubisi, B.A., Bastos, A.D., Dwarka, R.M., Vosloo, W., 2005. Molecular 

epidemiology of African swine fever in East Africa. Arch Virol 150, 2439-2452.  

179. Luther, N.J., Majiyagbe, K.A., Shamaki, D., Lombin, L.H., Antiagbong, J.F., Bitrus, 

Y., Owolodun, O., 2007. Detection of African swine fever virus genomic DNA in a Nigerian 

red river hog (Potamochoerus porcus). Vet Rec 160, 58-59.  

180. Lyra, T.M., 2006. [The eradication of African swine fever in Brazil, 1978-1984]. Rev 

Sci Tech 25, 93-103. 

181. Macian, F., Lopez-Rodriguez, C., Rao, A.J.N., 2001. Partners in transcription: NFAT 

and AP-1. Oncogene 20, 2476-2489. 

182. Malmquist, W.A., 1963. Serologic and immunologic studies with African swine 

fever virus. Am J Vet Res 24, 450-&.  

183. Malmquist, W.A., Hay, D., 1960. Hemadsorption and cytopathic effect produced by 

African swine fever virus in swine bone marrow and buffy coat cultures. Am J Vet Res 21, 

104-108. 

184. Mannelli, A., Sotgia, S., Patta, C., Oggiano, A., Carboni, A., Cossu, P., Laddomada, 

A., 1998. Temporal and spatial patterns of African swine fever in Sardinia. Prev Vet Med 

35, 297-306. 

185. Mannelli, A., Sotgia, S., Patta, C., Sarria, A., Madrau, P., Sanna, L., Firinu, A., 

Laddomada, A., 1997. Effect of husbandry methods on seropositivity to African swine fever 

virus in Sardinian swine herds. Prev Vet Med 32, 235-241. 

186. Manso Ribeiro, J.J., Petisca, N.J., Lopes Frazao, F., Sobral, M., 1963. Vaccination 

contre la peste porcine. Bull Off Int Epizoot 60, 921-937. 

187. Mansvelt, P. R. The incidence and control of African swine fever in theb Republic of 

South Africa. Bull Off Int Epizoot 60, 889-894. 1963.  

188. Manual of diagnostic tests and vaccines for terrestrial animals. Vol.2. Section 2.8. 

Chapter 2.8.1. OIE. Available online at 

http://www.oie.int/eng/normes/mmanual/A_summry.htm?e1d11(last accessed on July08). 

http://www.oie.int/eng/normes/mmanual/A_summry.htm?e1d11


 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 126 
 

189. Manzano-Roman, R., Encinas-Grandes, A., Perez-Sanchez, R., 2006. Antigens from 

the midgut membranes of Ornithodoros erraticus induce lethal anti-tick immune responses 

in pigs and mice. Vet Parasitol 135, 65-79. 

190. Manzano-Roman, R., Garcia-Varas, S., Encinas-Grandes, A., Perez-Sanchez, R., 

2007. Purification and characterization of a 45-kDa concealed antigen from the midgut 

membranes of Ornithodoros erraticus that induces lethal anti-tick immune responses in pigs. 

Vet Parasitol 145, 314-325. 

191. Martin Hernandez, A.M. and Tabares, E., 1990. Expression and characterization of 

the thymidine kinase gene of African swine fever virus. J Virol 65(2), 1046-1052. 

192. Martinez-Pomares, L., Simon-Mateo, C., Lopez-Otin, C., Vinuela, E., 1997. 

Characterization of the African swine fever virus structural protein p14.5: a DNA binding 

protein. Virol 229, 201-211. 

193. Martins, C., Mebus, C., Scholl, T., Lawman, M., Lunney, J., 1988. Virus-Specific Ctl 

in Sla-Inbred Swine Recovered from Experimental African swine fever Virus (Asfv) 

Infection. Ann N Y Acad Sci 532, 462-464. 

194. Martins, C.L.V., Lawman, M.J.P., Scholl, T., Mebus, C.A., Lunney, J.K., 1993. 

African swine fever virus specific porcine cytotoxic t-cell activity. Arch Virol 129, 211-225. 

195. Martins, C.L.V., Leitao, A.C., 1994. Porcine immune-iesponses to African swine 

fever virus (Asfv) infection. Vet Imm Immunopath 43, 99-106. 

196. Mc Cullough, K.C., Basta, S., Knotig, S., Gerber, H., Schffner, R., Kim, Y.B. and 

Saalmuller A., 1999. Intermediate stages in monocyte-macrophage differentiation modulate 

phenotype and susceptibility to virus infection. Immunology 98, 203-212.  

197. McDaniel, H.A., 1986. African swine fever. In: Diseases of swine, 5th Ed. Ames, 

Iowa, USA, Iowa State University Press, p. 237-245. 

198. McKercher, P.D., Hess, W.R. and Hamdy, F., 1978. Residual viruses in pork 

products. Appl Environ Microbiol. 35(1), 142-145.  

199. McKercher, P.D., Yedloutschnig, R.J., Callis, J.J., Murpfy, R., Panina, G.F., Civardi, 

A., Bugnetti, M., Fonn, E.H., Laddomada, A., Scarana, C. and Scatozza, F., 1987. Survival 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 127 
 

of viruses in “Prosciutto di Parma” (Parma ham). Can. Inst. Food Sci. Tech. J. 20, 2476-

2489. 

200. McVicar, J. W., Mebus, C. A., Becker, H. N., Belden, R. C., and Gibbs, E. P.,1981. 

Induced African swine fever in feral pigs. J Am Vet Med Assoc 179(5):441-6. 

201. Mebus, C.A., Dardiri, A.H., 1980. Western Hemisphere isolates of African swine 

fever virus: asymptomatic carriers and resistance to challenge inoculation. Am J Vet Res 

47(11): 1867-1869. 

202. Mebus, C.A., House, C., Ruiz Gonzalvo, F., Pineda, J.M., Tapiador,  J., Pire, J.J., 

Bergada, J., Yedlontshning, R.J., Sahu, S., Becerra, V., Sanchez-Vizcaino, J.M., 1993. 

Survival of foot and mouth disease, African swine fever and hog cholera virus in Spanish 

serrano cured hams and Iberian cured hams, shoulder and loin. Food Microbiol 10:133-143. 

203. Mendes, A.M., 1954. Primeira tentativa de preparação de uma vacina contra a peste 

suína em Angola. Anais Serv Vet 47-56. 

204. Mendes, A.M., 1962. The lapinization of the virus of African swine fever. Bull Off 

Int Epizoot 58, 699-705. 

205. Mendes, A.M., Daskalos, A., 1955. Algumas tentativas para leporização de virus da 

peste suína em Angola. Rev Cie Vet Lisboa 50, 253-264. 

206. Michaud, V.P. Gil P., Kwiatek S., Prome S., Dixon L., Romero L., Le Potier M.-F., 

Arias M., Couacy-Hymann E., Roger F., Libeau G., Albina E., 2007. Long-term storage at 

tropical temperature of dried-blood filter papers for detection and genotyping of RNA and 

DNA viruses by direct PCR. J Virol Methods 146(1-2): 257-65.  

207. Minguez, I., Rueda, A., Dominguez, J., Sanchez-Vizcaino, J.M., 1988. Double 

labeling immunohistological study of African swine fever virus-infected spleen and lymph 

nodes. Vet Pathol 25, 193-198. 

208. Ministerio de Agricultura, Pesca y Alimentación, 1996. Peste porcina en España: 

Presentación, evolución y erradicación (1960-1996) (Spain). 

209. Mise-Omata, S., Montagne, B., Deckert, M. Wienands, J., Acuto, O., 2003. 

Mammalian actin binding protein 1 is essential for endocytosis but not lamellipodia 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 128 
 

formation: functional analysis by RNA interference. Biochem. And Biophys. Res. Comm. 

301, 704-710.Miskin, J.E., Abrams, C.C., Dixon, L.K., 2000. African swine fever virus 

protein A238L interacts with the cellular phosphatase calcineurin via a binding domain 

similar to that of NFAT. J Virol 74, 9412-9420. 

210. Miskin, J.E., Abrams, C.C., Goatley, L.C., Dixon, L.K., 1998. A viral mechanism for 

inhibition of the cellular phosphatase calcineurin. Science (New York, N.Y 281, 562-565. 

211. Montgomery, R.E., 1921. On a form of swine fever occurring in British East Africa 

(Kenya Colony). J Comp Pathol Therap 34: 159-191; 243-262. 

212. Moore, D.M., Zsak, L., Neilan, J.G., Lu, Z., Rock, D.L., 1998. The African swine 

fever virus thymidine kinase gene is required for efficient replication in swine macrophages 

and for virulence in swine. J Virol 72, 10310-10315. 

213. Morel, P., 1969. Ticks from Africa and the Mediterranean Bassin. CIRAD. 

214. Murtaugh, M.P., Baarsch, M.J., Zhou, Y., Scamurra, R.W., Lin, G., 1996. 

Inflammatory cytokines in animal health and disease. Vet Immunol Immunopathol, 54, 45-

55 

215. Neilan, J.G., Lu, Z., Afonso, C.L., Kutish, G.F., Sussman, M.D., Rock, D.L., 1993. 

An African swine fever virus gene with similarity to the proto-oncogene bcl-2 and the 

Epstein-Barr virus gene BHRF1. J Virol 67, 4391-4394. 

216. Neilan, J.G., Borca, M.V., Lu, Z., Kutish, G.F., Kleiboeker, S.B., Carrillo, C., Zsak, 

L., Rock, D.L., 1999. An African swine fever virus ORF with similarity to C-type lectins is 

non-essential for growth in swine macrophages in vitro and for virus virulence in domestic 

swine. J Gen Virol 80 (Pt 10), 2693-2697. 

217. Neilan, J.G., Lu, Z., Kutish, G.F., Zsak, L., Burrage, T.G., Borca, M.V., Carrillo, C., 

Rock, D.L., 1997. A BIR motif containing gene of African swine fever virus, 4CL, is 

nonessential for growth in vitro and viral virulence. Virology 230, 252-264. 

218. Neilan, J.G., Lu, Z., Kutish, G.F., Zsak, L., Lewis, T.L., Rock, D.L., 1997. A 

conserved African swine fever virus IkappaB homolog, 5EL, is nonessential for growth in 

vitro and virulence in domestic swine. Virology 235, 377-385. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=8988847&query_hl=11&itool=pubmed_docsum


 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 129 
 

219. Neilan, J.G., Zsak, L., Lu, Z., Burrage, T.G., Kutish, G.F., Rock, D.L., 2004. 

Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not 

sufficient for antibody-mediated protection. Virology 319, 337-342. 

220. Neitz, W.O. 1963. African swine fever. FAO Agric. Studies no. 61, pp.1-70, cf 

/58925/ 

221. Nix, R.J., Gallardo, C., Hutchings, G., Blanco, E., Dixon, L.K., 2006. Molecular 

epidemiology of African swine fever virus studied by analysis of four variable genome 

regions. Arch Virol 151, 2475-2494. 

222. Nogal, M.L., Gonzalez de Buitrago, G., Rodriguez, C., Cubelos, B., Carrascosa, 

A.L., Salas, M.L., Revilla, Y., 2001. African swine fever virus IAP homologue inhibits 

caspase activation and promotes cell survival in mammalian cells. J Virol 75, 2535-2543. 

223. Norley, S.G., Wardley, R.C., 1982. Complement-Mediated Lysis of African swine 

fever Virus-Infected Cells. Immunology 46, 75-82. 

224. Norley, S.G., Wardley, R.C., 1983a. Effector mechanisms in the pig - antibody-

dependent cellular cytolysis of African swine fever virus-infected cells. Res Vet Sci 35, 75-

79. 

225. Norley, S.G., Wardley, R.C., 1983b. Investigation of porcine natural-killer cell-

activity with reference to African swine-fever virus-infection. Immunology 49, 593-597. 

226. OIE 2005. African swine fever in Burkina Faso. [French] Mission report n°1, 

Sanitary Information 18 (14). Available on http://www.oie.int/fr/info/hebdo/FIS_76.htm 

227. OIE. 2008. Annual sanitary informations. 2008, from http://www.oie.int/wahid-

prod/public.php?page=home. 

228. Oleaga Perez, A., 1989. Distribution, biologia y relaciones de Ornithodoros erraticus 

con el ganado porvino en Espana, en areas de peste porcina Africana enzootica. Salamanca, 

Universidad de Salamanca. PhD: 151. 

229. Oleaga-Pérez A, Pérez-Sanchez R, Encinas-Grandes A, 1990. Distribution and 

biology of Ornithodoros erraticus in parts of Spain affected by African swine fever. Vet Rec. 

126(2):32-7. 

http://www.oie.int/fr/info/hebdo/FIS_76.htm
http://www.oie.int/wahid-prod/public.php?page=home
http://www.oie.int/wahid-prod/public.php?page=home


 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 130 
 

230. Oliver, W. L. B., Brisbin, L., and Takahashi, S., 1993. The Eurasian Wild Pig. In 

'Pigs, Peccaries and Hippos Status Survey and Action Plan,‟ (Ed. W. L. B. Oliver.) pp. 107-

191. (IUCN: Gland, Switzerland.) 

231. Oliveros, M., Garcia-Escudero, R., Alejo, A., Vinuela, E., Salas, M.L., Salas, J., 

1999. African swine fever virus dUTPase is a highly specific enzyme required for efficient 

replication in swine macrophages. J Virol 73, 8934-8943. 

232. Oliveros, M., Yanez, R.J., Salas, M.L., Salas, J., Vinuela, E., Blanco, L., 1997. 

Characterization of an African swine fever virus 20-kDa DNA polymerase involved in DNA 

repair. J Biol Chem 272, 30899-30910. 

233. Onisk, D.V., Borca, M.V., Kutish, G., Kramer, E., Irusta, P., Rock, D.L., 1994. 

Passively transferred African swine fever virus antibodies protect swine against lethal 

infection. Virology 198, 350-354. 

234. Ortin, J., Vinuela, E., 1977. Requirement of cell nucleus for African swine fever 

virus replication in Vero cells. J Virol 21, 902-905. 

235. Oura CAL, Powell PP, Anderson E, Parkhouse RME, 1998. The pathogenesis of 

African swine fever in the resistant bushpig. J Gen Virol 79: 1439-1443. 

236. Oura, C.A., Denyer, M.S., Takamatsu, H., Parkhouse, R.M., 2005. In vivo depletion 

of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J Gen 

Virol 86, 2445-2450. 

237. Pan, I.C., De Boer, C.J., Hess, W.R., 1972. African swine fever: application of 

immunoelectroosmophoresis for the detection of antibody. Can J Comp Med 36, 309-316. 

238. Pan, I.C., Trautman, R., Hess, W.R., DeBoer, C.J., Tessler, J., Ordas, A., Botija, 

C.S., Ovejero, J., Sanchez, M.C., 1974. African swine fever: comparison of four serotests on 

porcine serums in Spain. Am J Vet Res 35, 787-790. 

239. Parker, J., Plowright, W., Pierce, M.A., 1969. The epizootiology of African swine 

fever in Africa. Vet Rec 85, 668-674. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 131 
 

240. Pastor, M.J., Arias, M., Escribano, J.M., 1990. Comparison of two antigens for use in 

an enzyme-linked immunosorbent assay to detect African swine fever antibody. Am J Vet 

Res 51, 1540-1543. 

241. Penrith ML, Thomson GR, Bastos ADS, 2004. African swine fever. In: Coetzer, 

J.A.W., Tustin, R.C. (Eds.), Infectious Diseases of Livestock with Special Reference to 

Southern Africa, 2nd ed. Oxford University Press, Cape Town, pp. 1087–1119. 

242. Penrith, M. L., Lopes Pereira, C., Lopes Da Silva, M. M. R., Quembo, C., 

Nhamusso, A., and Banze, J. 2007. African swine fever in Mozambique: review, risk factors 

and considerations for control. Onderstepoort J Vet Res 74, 149-160.  

243. Perez, J., Fernandez, A. I., Sierra, M. A., Herraez, P., and de las Mulas, J. Martin, 

1998. Serological and immunohistochemical study of African swine fever in wild boar in 

Spain. Vet Rec 143, 136-139. 

244. Perez-Filgueira, D.M., Gonzalez-Camacho, F., Gallardo, C., Resino-Talavan, P., 

Blanco, E., Gomez-Casado, E., Alonso, C., Escribano, J.M., 2006. Optimization and 

validation of recombinant serological tests for African swine fever diagnosis based on 

detection of the p30 protein produced in Trichoplusia ni larvae. J Clin Microbiol 44, 3114-

3121. 

245. Perez-Sanchez, R., Oleaga, A., Encinas, A., 1992. Analysis of the specificity of the 

salivary antigens of Ornithodoros erraticus for the purpose of serological detection of swine 

farms harbouring the parasite. Parasite Immunol 14 201-216. 

246. Petisca, N.J., 1965. Quelques aspects morphologiques à la suite de la vaccination 

contre la peste porcine Africaine (Virose L) au Portugal. Bull Off Int Epizoot 63 bis, 199-

237. 

247. Pierce, M.A., 1974. Distribution and ecology of Ornithodoros moubata porcinus 

Walton (Acarina) in animal burrows in East Africa. Bull Entomol Res 64:605-619. 

248. Pini, A., Hurter, L.R., 1975. African swine fever: An epizootiological review with 

special reference to the South African situation. J S Afr Vet Assoc 46:227-232. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 132 
 

249. Plowright, W., Parker, J., 1967. The stability of African swine fever virus with 

particular reference to heat and pH inactivation. Arch Gesamte Virusforsch 21, 383-402. 

250. Plowright, W., Parker, J., Pierce, M.A., 1969. The epizootiology of African swine 

fever in Africa. Vet Rec 85:668-674. 

251. Plowright, W., Perry, C.T., Pierce, M.A., 1970. Transovarial infection with African 

swine fever virus in the Argasid tick, Ornithodoros moubata porcinus, Walton. Res Vet Sci 

2: 582-584. 

252. Plowright, W., Perry, C.T., Greig, A., 1974. Sexual transmission of African swine 

fever virus in the tick Ornithodoros moubata porcinus Walton. Res Vet Sci 17:106-113. 

253. Plowright, W., 1977. Vector transmission of African swine fever virus. Seminar on 

hog cholera/classical swine fever and African swine fever. Commission of the European 

Communities. Eur. 5904 En. pp. 575-587. 

254. Plowright, W., 1981. African swine fever. In: Davis JW, Karstad LH, Trainer DO. 

Editors. Infectious diseases of wild mammals. 2
nd

 ed. Ames, Iowa: Iowa State University 

Press. pp. 178–190. 

255. Plowright, W., Thomson, G.R., Neser, J.A, 1994. African swine fever. In Infectious 

Diseases of livestock with special reference to Southern Africa (J.A.W.Coetzer, 

G.R.Thomson, & R.C.Tustin, eds) Cape Town Oxford University Press, 567-599. 

256. Powell, P.P., Dixon, L.K., Parkhouse, R.M., 1996. An IkappaB homolog encoded by 

African swine fever virus provides a novel mechanism for downregulation of 

proinflammatory cytokine responses in host macrophages. J Virol 70, 8527-8533. 

257. Ramiro-Ibanez, F., Ortega, A., Brun, A., Escribano, J.M., Alonso, C., 1996. 

Apoptosis: a mechanism of cell killing and lymphoid organ impairment during acute African 

swine fever virus infection. J Gen Virol 77 (Pt 9), 2209-2219. 

258. Rennie, L., Wilkinson, P.J., Mellor, P.S., 2001. Transovarial transmission of African 

swine fever virus in the Argasid tick Ornithodoros moubata. Med Vet Entomol 15: 140-146. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 133 
 

259. Revilla, Y., Callejo, M., Rodriguez, J.M., Culebras, E., Nogal, M.L., Salas, M.L., 

Vinuela, E., Fresno, M., 1998. Inhibition of nuclear factor kappaB activation by a virus-

encoded IkappaB-like protein. J Biol Chem 273, 5405-5411. 

260. Revilla, Y., Cebrian, A., Baixeras, E., Martinez, C., Vinuela, E., Salas, M.L., 1997. 

Inhibition of apoptosis by the African swine fever virus Bcl-2 homologue: role of the BH1 

domain. Virology 228, 400-404. 

261. Rey-Herme, P., 2004. Epidemiology of African swine fever in the area of the project 

ECPAS in Burkina Faso. Mission report delivered by CIRAD. 28 pp. 

262. Rodhain, F., 1976. Borrelia et fièvres récurrentes: aspects épidémiologiques actuels. 

Bull. Inst. Pasteur 74, 173-218. 

263. Rodriguez, J.M., Yanez, R.J., Almazan, F., Viñuela, E., Cuezva, J.M. and Salas, J., 

1993. African swine fever virus encodes a CD2 homolog responsible for the adhesion of 

erythrocytes to infected-cells. J Virol 67, 5312-5320.  

264. Rodriguez, F., Fernandez, A., Perez, J., delasMulas, J.M., Sierra, M.A., Jover, A., 

1996a. African swine fever: Morphopathology of a viral haemorrhagic disease. Vet Rec 139, 

249-254. 

265. Rodriguez, F., Ley, V., Gómez-Puertas, P., Garcia, R., Rodriguez, J.F. and 

Escribano, J.M., 1996b. The structural protein p54 is essential for African swine fever virus 

viability. Virus Res 40, 161-167. 

266. Rodriguez, J.M., Garcia-Escudero, R., Salas, M.L., Andres, G., 2004. African swine 

fever virus structural protein p54 is essential for the recruitment of envelope precursors to 

assembly sites. J Virol 78, 4299-1313. 

267. Rodriguez, J.M., Yanez, R.J., Pan, R., Rodriguez, J.F., Salas, M.L., Vinuela, E., 

1994. Multigene families in African swine fever virus: family 505. J Virol 68, 2746-2751. 

268. Roeder, P.L., Masiga, W.N., Rossiter, P.B., Paskin, R.D., Obi, T.U., 1999. Dealing 

with animal disease emergencies in Africa: prevention and preparedness. Rev Sci Tech 18, 

59-65. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 134 
 

269. Roger, F., Ratovonjato, J., Vola, P., Uilenber, G., 2001. Ornithodoros porcinus ticks, 

bushpigs, and African swine fever in Madagascar. Exp Appl Acarol 25, 263-269.  

270. Rojo, G., Chamorro, M., Salas, M.L., Vinuela, E., Cuezva, J.M., Salas, J., 1998. 

Migration of mitochondria to viral assembly sites in African swine fever virus-infected cells. 

J Virol 72, 7583-7588. 

271. Rojo, G., Garcia-Beato, R., Vinuela, E., Salas, M.L., Salas, J., 1999. Replication of 

African swine fever virus DNA in infected cells. Virology 257, 524-536. 

272. Rousset, D., Randriamparany, T., Maharavo Rahantamalala, C.Y., Randriamahefa, 

N., Zeller, H., Rakoto-Andrianarivelo, M., Roger, F., 2001. [African swine fever 

introduction into Madagascar, history and lessons from an emergence]. Arch Inst Pasteur 

Madagascar 67, 31-33.  

273. Rouillier, I., Brookes, S.M., Hyatt, A.D., Windsor, M. and Wileman, T., 1998. 

African swine fever virus is wrapped by the endoplasmic reticulum, J Virol 72(3), 2373-

2387. 

274. Ruiz Gonzalvo, F., Carnero, M.E., Caballero, C., Martinez, J., 1986. Inhibition of 

African swine fever infection in the presence of immune sera in vivo and in vitro. Am J Vet 

Res 47, 1249-1252. 

275. Ruiz-Gonzalvo, F., Coll, J.M., 1993. Characterization of a soluble hemagglutinin 

induced in African swine fever virus-infected cells. Virology 196, 769-777. 

276. Ruiz-Gonzalvo, F., Rodriguez, F., Escribano, J.M., 1996. Functional and 

immunological properties of the baculovirus-expressed hemagglutinin of African swine 

fever virus. Virology 218, 285-289. 

277. Rutili, D, 2006. African swine fever in Italy: updated epidemiological situation. 

Presentation from the CEREP-Istituto Zooprofilattico Sperimentale dell‟Umbria e delle 

Marche- Perugia, I. May 17, 2006. 

278. Safari Club Foundation, 2006 Electronic citation: 

http://www.safariclubfoundation.org/humanitarian/sensory/recordbook/dsp_AnimalDetail.cf

m?Detail=pigs 

http://www.safariclubfoundation.org/humanitarian/sensory/recordbook/dsp_AnimalDetail.cfm?Detail=pigs
http://www.safariclubfoundation.org/humanitarian/sensory/recordbook/dsp_AnimalDetail.cfm?Detail=pigs


 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 135 
 

279. Samui, K.L., Nambota, A.M., Mweene, A.S., Onuma, M., 1996. African swine fever 

in Zambia: potential financial and production consequences for the commercial sector. Jpn J 

Vet Res 44, 119-124.  

280. Sanchez, C., Domenech, N., Vazquez, J., Alonso, F., Ezquerra, A. and Dominguez, 

J., 1999. The porcine 2A10 antigen is homologous to human CD163 and related to 

macrophage differenciation. J Immunol 162, 5230-5237. 

281. Sanchez Botija, C., 1963. Reservoirs of ASFV: a study of the ASFV in arthropods by 

means of haemadsorption. Bull Off Int Epizoot 60, 895–899. 

282. Sanchez Botija, C., 1982. African swine fever: new developments. Rev. Sci Tech 

1(4): 1065-1094 

283. Sanchez-Torres, C., Gomez-Puertas, P., Gomez-del-Moral, M., Alonso, F., 

Escribano, J.M., Ezquerra, A., Dominguez, J., 2003. Expression of porcine CD163 on 

monocytes/macrophages correlates with permissiveness to African swine fever infection. 

Arch Virol 148, 2307-2323. 

284. Sanchez-Vizcaino, J.M., Slauson, D.O., Ruizgonzalvo, F., Valero, F., 1981. 

Lymphocyte Function and Cell-Mediated-Immunity in Pigs with Experimentally Induced 

African swine fever. Am J Vet Res 42, 1335-1341. 

285. Sanchez-Vizcaino, J.M., 1987. African swine fever diagnosis. In: African swine 

fever, Becker Y., ed. Martinus Nijhoff, Boston, USA, 63–71. 

286. Sanchez-Vizcaino, J.M., 2006. African swine fever. Diseases of Swine, 9
th

 Edition. 

Blackwell Publishing. Chapter 13, 291-298. 

287. Sarr J, 1990. Study of African swine fever in Senegal. [French]. Report from the 

Senegalese Institute for Agricultural Research (ISRA), Dakar. 32pp. 

288. Schlafer, D.H., McVicar, J.W., Mebus, C.A., 1984. African swine fever convalescent 

sows - subsequent pregnancy and the effect of colostral antibody on challenge inoculation of 

their pigs. Am J Vet Res 45, 1361-1366. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 136 
 

289. Schlafer, D.H., Mebus, C.A., McVicar, J.W., 1984. African swine fever in neonatal 

pigs - passively acquired protection from colostrum or serum of recovered pigs. Am J Vet 

Res 45, 1367-1372. 

290. Scholl, T., Lunney, J.K., Mebus, C.A., Duffy, E., Martins, C.L.V., 1989. Virus-

specific cellular blastogenesis and interleukin-2 production in swine after recovery from 

African swine fever. Am J Vet Res 50, 1781-1786. 

291. Seydack, A. H. W. The ecology of the bushpig (Potamochoerus porcus Linn. 1758) 

in the Cape Province, South Africa.  -University of Stellenbosch, 728 pp. 1990.  

Thesis/Dissertation 

292. Shimizu, M., Pan, I.C., Hess, W.R., 1977. Cellular immunity demonstrated in pigs 

infected with African swine fever Virus. Am J Vet Res 38, 27-31. 

293. Shirai, J., Kanno, T., Tsuchiya, Y., Mitsubayashi, S., Seki, R., 2000. Effects of 

chlorine, iodine, and quaternary ammonium compound disinfectants on several exotic 

disease viruses. J Vet Med Sci. 62(1), 85-92.  

294. Sierra, M.A., Bernabe, A., Mozos, E., Mendez, A., Jover, A., 1987. Ultrastructure of 

the liver in pigs with experimental African swine fever. Vet Pathol 24, 460-462. 

295. Siméon-Negrin, R. E. and Frias-Lepoureau, M. T., 2002. Erradication of African 

swine fever in Cuba (1971 and 1980). In 'Trends in emerging viral infections of swine'. (A. 

Morilla, K. J. Yoon, and J. F. Zimmermann Eds.) pp. 125-131. (Iowa State University Press) 

296. Sonenshine, D.E., 1993. Biology of ticks. New York, Oxford University Press. 

297. Stephanovich, V.A., Luk'yanchuk, I.A., Karkut, M.G., 2005. Domain-enhanced 

interlayer coupling in ferroelectric/paraelectric superlattices. Phys Rev Lett 94, 047601. 

298. Steyn, D.G., 1932. . East African virus disease of pigs. In: 18th Rep Dir Vet Serv. 

Anim Ind. U.S. Afri., pp. 99-109. 

299. Sumption, K.J., Hutchings, G.H., Wilkinson, P.J., Dixon, L.K., 1990. Variable 

regions on the genome of Malawi isolates of African swine fever virus. The J Gen Virol 71 

(Pt 10), 2331-2340. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 137 
 

300. Sun, H., Jenson, J., Dixon, L.K., Parkhouse, M.E., 1996. Characterization of the 

African swine fever virion protein j18L. The J Gen Virol 77 (Pt 5), 941-946. 

301. Tait, S.W., Reid, E.B., Greaves, D.R., Wileman, T.E., Powell, P.P., 2000. 

Mechanism of inactivation of NF-kappa B by a viral homologue of I kappa b alpha. Signal-

induced release of i kappa b alpha results in binding of the viral homologue to NF-kappa B. 

J Biol Chem 275, 34656-34664. 

302. Taylor, W. P., Best, J. R., and Colquhoun, I. R, 2007. Absence of African swine 

fever from Nigerian warthogs. Bulletin of Animal Health and Production in Africa 25, 196-

203.  

303. Tendeiro, J., 1962. Revisão sistemática dos ixodídeos portugueses. Boletim Pecuário 

30(2): 1-135. 

304. Terai, C. and Carson, D.A., 1991. Pyrimidine nucleotide and nucleic acid synthesis 

in human monocytes and macrophages. Exp Cell Res 193, 375-381. 

305. Terpstra, C., Wensvoort, G., 1986. [African swine fever in the Netherlands]. Tijdschr 

Diergeneeskd 111, 389-392. 

306. Thomson, G.R., Gainaru, M.D., Van Dellen, A.F., 1980. Experimental infection of 

warthog (Phacocherus aethiopicus) with African swine fever virus. Onderstepoort J Vet Res 

47: 19-22. 

307. Thomson, G. R., 1985. The epidemiology of African swine fever: the role of free-

living hosts in Africa. Onderstepoort J Vet Res 52, 201-209. 

308. Thomson, G.R., 1999 - Alternatives for controlling animal diseases resulting from 

interaction between livestock and wildlife in southern Africa. S Afr J Sci, 95 (2), 71-76 

309. Tulman, E.R., Rock, D.L., 2001. Novel virulence and host range genes of African 

swine fever virus. Curr Opin Microbiol 4, 456-461. 

310. Turner, C., Williams, S.M., 1999. Laboratory-scale inactivation of African swine 

fever virus and swine vesicular disease virus in pig slurry. J Appl Microbiol 87, 148-157. 

311. Uilenberg, G., 1963. Existence de Ornithodoros porcinus Walton, 1962 (Argasidae) à 

Madagascar. Rev Elev Méd Vét Pays Trop 16(2): 147-150. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 138 
 

312. Valdeira, M.L., Bernardes, C., Cruz, B., Geraldes, A., 1998. Entry of African swine 

fever virus into Vero cells and uncoating. Vet Microbiol 60, 131-140. 

313. Vale, R.D., 2003. The molecular motor toolbox for intracellular transport. Cell 112 

(4), 467-480. 

314. Vallee, I., Tait, S.W., Powell, P.P., 2001. African swine fever virus infection of 

porcine aortic endothelial cells leads to inhibition of inflammatory responses, activation of 

the thrombotic state, and apoptosis. J Virol 75, 10372-10382. 

315. Vercammen, P. and Mason, D. R., 1993. Chapter 4.2. The Warthogs (Phacochoerus 

africanus and P. aethiopicus). In 'Pigs, Peccaries and Hippos Status Survey and Action 

Plan,‟ (Ed. W. L. B. Oliver.) IUCN/SSC, Gland, Switzerland.) 

316. Vercammen, P., Seydack, A. H. W., and Oliver, W. L. B., 1993. Chapter 4.4. : The 

Bush Pigs (Potamochoerus porcus and P. larvatus. In 'Pigs, Peccaries and Hippos Status 

Survey and Action Plan'. (Ed. W. L. B. Oliver.) IUCN/SSC, Gland, Switzerland.) 

317. Vial, L., Durand, P., Arnathau, C., Halos, L., Diatta, G., Trape, J.F., Renaud, F., 

2006a. Molecular divergences of the Ornithodoros sonrai soft tick species, a vector of 

human relapsing fever in West Africa. Microbes Infect 8(11):2605-2611  

318. Vial, L., Diatta, G., Tall, A., Ba, el H., Bouganali, H., Durand, P., Sokhna, C., 

Rogier, C., Renaud, .F, Trape, J.F., 2006b. Incidence of tick-borne relapsing fever in west 

Africa: longitudinal study. Lancet 368(9529):37-43.  

319. Vial, L., Wieland, B., Jori, F., Etter, E., Dixon, L., Roger, F., 2007. African swine 

fever virus DNA in soft ticks, Senegal. Emerg Infect Dis 13, 1928-1931.  

320. Vigario, J. D., A. M. Terrinha, et al. (1974). "Antigenic relationships among starins 

of African swine fever virus." Arch Gesamte Virusforsch 31: 387-389. 

321. Vydelingum, S., Baylis, S.A., Bristow, C., Smith, G.L., Dixon, L.K., 1993. 

Duplicated genes within the variable right end of the genome of a pathogenic isolate of 

African swine fever virus. J Gen Virol 74 (Pt 10), 2125-2130. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 139 
 

322. Wallis, G. P. and B. R. Miller, 1983. Electrophoretic analysis of the ticks 

Ornithodoros (Pavlovskyella) erraticus and O. (P.) sonrai (Acari Argasidae). J Med Entomol 

20: 570-571. 

323. Walton, G.A., 1962. The Ornithodoros moubata subspecies problem in relation to 

human relapsing fever epidemiology. Symp Zool Soc Lond 6: 83-156. 

324. Walton, G.A., 1964. The Ornithodorus “moubata” group of ticks in Africa: Control 

problems and implications, J Med Ent, 1 (1), 53. 

325. Walton, G.A., 1967. The Ornithodorus moubata complex in Africa. World Health 

Organization Seminar on the Ecology, Biology and Control of Ticks and Mites of Public 

Health Importance. Geneva, 11-15 December 1967. 

326. Walton, G.A., 1979. A taxonomic review of the Ornithodoros moubata (Murray) 

1877 (sensu Walton, 1962) species group in Africa. In Recent Advances in Acarology, Vol. 

II. Academic Press eds. 491-500. 

327. Wambura, P.N., Masambu, J., Msami, H., 2006. Molecular diagnosis and 

epidemiology of African swine fever outbreaks in Tanzania. Vet Res Comm 30, 667-672. 

328. Wardley, R.C., Wilkinson, P.J., Hamilton, F., 1977. African swine fever virus 

replication in porcine lymphocytes. J Gen Virol 37, 425-427. 

329. Wardley, R.C., Wilkinson, P.J., 1980. Lymphocyte-responses to African swine fever 

virus-infection. Res Vet Sci 28, 185-189. 

330. Wardley, R.C., de, M.A.C., Black, D.N., de Castro Portugal, F.L., Enjuanes, L., 

Hess, W.R., Mebus, C., Ordas, A., Rutili, D., Sanchez Vizcaino, J.M, Vigario, J.D., 

Wilkinson, P.J., Moura Nunes, J.F., Thomson, G., 1983. African swine fever virus. Brief 

review. Arch Virol 76, 73-90. 

331. Wardley, R.C., Norley, S.G., Wilkinson, P.J., Williams, S., 1985. The role of 

antibody in protection against African swine fever virus. Vet Immunol Immunopathol 9, 

201-212.  



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 140 
 

332. Warren, D.T., Andrews, P.D., Gourlay, C.W., Ayscough, K.R., 2002. Sla1p couples 

the yeast endocytic machinery to proteins regulating actin dynamics. J. Cell Sc. 115, 1703-

1715. 

333. Wellman, F.C., 1906. A note on the habits of Ornithodoros moubata. J Trop Med 

Hyg 9: 97. 

334. Wesley, R.D., Quintero, J.C., Mebus, C.A., 1984. Extraction of viral DNA from 

erythrocytes of swine with acute African swine fever. Am J Vet Res 45, 1127-1131. 

335. Whyard, T.C., Wool, S.H., Letchworth, G.J., 1985. Monoclonal antibodies against 

African swine fever viral antigens. Virology 142, 416-420. 

336. Wiedmann, B., Sakai, H., Davis, T.A., Wiedmann, M., 1994. A protein complex 

required for signal-sequence-specific sorting and translocation. Nature 370, 434-440. 

337. Wilkinson, P. J., 1984. The persistence of African swine fever in Africa and the 

Mediterranean. Prev Vet Med 2, 71-82. 

338. Wilkinson, P.J., Pegram, R.J., Perry, B.D., Lemche, J., Schels, H.F., 1988. The 

distribution of African swine fever virus isolated from Ornithodoros moubata in Zambia. 

Epidem Infect 101, 547-564. 

339. Wilkinson, P.J. 1989. African swine fever virus. In 'Virus Infections of Vetebrates. 

Vol 2: Virus infections of porcines.‟ (Ed. M. B. Penjaert.) pp. 17-35. (Elsevier) 

340. Wilson, S.G., 1943. Cattle ticks and their control by dipping in Nyasaland. Nyasal 

Agric Quart J. 3: 15. 

341. Yanez, R.J., Rodriguez, J.M., Nogal, M.L., Yuste, L., Enriquez, C., Rodriguez, J.F., 

Vinuela, E., 1995. Analysis of the complete nucleotide sequence of African swine fever 

virus. Virology 208, 249-278. 

342. Yanez, R.J., Vinuela, E., 1993. African swine fever virus encodes a DNA ligase. 

Virology 193, 531-536. 

343. Yanez, R.J., Boursnell, M., Nogal, M.L., Yuste, L., Vinuela, E., 1993. African swine 

fever virus encodes two genes which share significant homology with the two largest 

subunits of DNA-dependent RNA polymerases. Nucleic Acids Res 21, 2423-2427. 



 
CCFFPP//EEFFSSAA//AAHHAAWW//22000077//0022  

SScciieennttiiffiicc  rreevviieeww  oonn  AAffrriiccaann  SSwwiinnee  FFeevveerr  

 

 

 

The present document has been produced and adopted by the bodies identified above as authors. In 
accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the 
authors in the context of a grant agreement between the European Food Safety Authority and the authors. 
The present document is published complying with the transparency principle to which the European Food 
Safety Authority is subject. It may not be considered as an output adopted by EFSA. EFSA reserves its 
rights, view and position as regards the issues addressed and the conclusions reached in the present 

document, without prejudice to the rights of the authors.  Page 141 
 

344. Yotov, W.V., Moreau, A., St-Arnaud, R., 1998.The alpha chain of the nascent 

polypeptide-associated complex functions as a transcriptional coactivator. Mol. And Cell 

Biol. 18, 1303-1311. 

345. Yozawa, T., Kutish, G.F., Afonso, C.L., Lu, Z., Rock, D.L., 1994. Two novel 

multigene families, 530 and 300, in the terminal variable regions of African swine fever 

virus genome. Virology 202, 997-1002. 

346. Zinkerna.Rm, Doherty, P.C., 1974. Restriction of in-vitro t cell-mediated 

cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. 

Nature 248, 701-702. 

347. Zsak, L., Borca, M.V., Risatti, G.R., Zsak, A., French, R.A., Lu, Z., Kutish, G.F., 

Neilan, J.G., Callahan, J.D., Nelson, W.M., Rock, D.L., 2005. Preclinical diagnosis of 

African swine fever in contact-exposed swine by a real-time PCR assay. J Clin Microbiol 

43, 112-119.  

348. Zsak, L., Caler, E., Lu, Z., Kutish, G.F., Neilan, J.G., Rock, D.L., 1998. A 

nonessential African swine fever virus gene U.K. is a significant virulence determinant in 

domestic swine. J Virol 72, 1028-1035. 

349. Zsak, L., Lu, Z., Burrage, T.G., Neilan, J.G., Kutish, G.F., Moore, D.M., Rock, D.L., 

2001. African swine fever virus multigene family 360 and 530 genes are novel macrophage 

host range determinants. J Virol 75, 3066-3076. 

350. Zsak, L., Onisk, D.V., Afonso, C.L., Rock, D.L., 1993. Virulent African swine fever 

virus isolates are neutralized by swine immune serum and by monoclonal antibodies 

recognizing a 72-kDa viral protein. Virology 196, 596-602. 

351. Zumpt F, 1961. Isolates of spirochaetes isolated from Ornithodorus zumpti Heisch & 

Guggisberg, and from wild rats in the Cape Province. A preliminary note. S Afr J Lab Clin 

Med 7: 31. 

 

 

 


	Cover ASF.pdf
	CFP_AHAW_2007_02_ASF.pdf

