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SUMMARY 

Considering the need for transparent and scientifically justifiable approaches to be used when 

risks are assessed by the Scientific Committee and the Scientific Panels of EFSA, the 

Scientific Committee was requested by EFSA to assess the existing information on the utility 

of the benchmark dose (BMD) approach, as an alternative to the traditionally used NOAEL 

approach, and to make recommendations on whether EFSA should use the BMD approach 

and under which circumstances this use would be appropriate. The Scientific Committee was 

also asked to provide some guidance on how to use the BMD approach for analysing dose-

response data from experimental studies, and to look at the possible application of this 

approach to data from observational epidemiological studies. Finally, the Scientific 

Committee was asked to advise on whether the selection of appropriate uncertainty factors are 

needed when using the BMD approach for deriving the Reference Point. 

 

                                                 
1  For citation purposes: Guidance of the Scientific Committee on a request from EFSA on the use of the benchmark dose 

approach in risk assessment. The EFSA Journal (2009) 1150, 1-72 
2 External expert of the EFSA Scientific Committee 
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Traditionally, when experimental animal data are used for risk assessment of substances in 

food, which are not genotoxic and carcinogenic, the No-Observed-Adverse-Effect-Level 

(NOAEL) and/or the Lowest-Observed-Adverse-Effect-Level (LOAEL) for the critical effect 

of a substance, forms the Reference Point for deriving health-based guidance values, such as 

an Acceptable Daily Intake (ADI). However, while this approach may utilise qualitative 

information, it does not use the data available in a quantitative way. In contrast, the BMD 

approach makes extended use of the dose-response data from studies in experimental animals 

or from observational epidemiological studies to better characterise and quantify potential 

risks.  

EFSA has not systematically used the BMD approach so far, although some EFSA Scientific 

Panels have been applying the BMD approach occasionally. Moreover, experimental data 

from which a BMD has been calculated are submitted from time to time. EFSA‟s Scientific 

Committee has also proposed in a previous Opinion to use the BMD approach for deriving the 

Reference Point for the estimation of Margins of Exposure for substances that are both 

genotoxic and carcinogenic.  

After comparing the strengths and weaknesses of the BMD and NOAEL approaches for 

deriving Reference Points for risk assessment, the Scientific Committee concludes that the 

BMD approach is a scientifically more advanced method to the NOAEL approach for deriving 

a Reference Point, since it makes extended use of available dose-response data and it provides 

a quantification of the uncertainties in the dose-response data. Using the BMD approach also 

results in a more consistent Reference Point, as a consequence of the specified benchmark 

response.  

Whilst software is currently available for BMD analysis, the Scientific Committee notes that 

this is evolving and significant developments are anticipated in the medium term, e.g. model 

averaging, analysis of continuous data.  

The Scientific Committee also considers that when toxicity test guidelines, e.g. OECD 

guidelines, are revised, specific aspects of the BMD approach are taken into account. 

Health-based guidance values derived using the BMD approach can be expected to be as 

protective as those derived from the NOAEL approach, i.e. on average over a large number of 

risk assessments. Therefore the default values for uncertainty factors currently applied remain 

appropriate and there is no need for any additional uncertainty factor.  

The Scientific Committee does not consider it necessary to repeat all previous evaluations 

using the BMD approach, because, on average, the BMD and NOAEL approaches give 

comparable results. Where refinement of previous risk assessments is considered necessary, 

for instance where the human exposure is close to the ADI, application of the BMD approach 

would be of particular value. 
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The BMD approach is applicable to all chemicals in food, irrespective of their category or 

origin, e.g. pesticides, additives or contaminants. The BMD approach is of particular value for 

i) situations where the identification of a NOAEL is uncertain, ii) providing a Reference Point 

for the Margin of Exposure in case of substances that are both genotoxic and carcinogenic, 

and iii) dose-response assessment of observational epidemiological data. In the short term, the 

EFSA Scientific Panels and Units are strongly encouraged to adopt the BMD approach to 

situations such as those described above.  

In the longer term, the Scientific Committee anticipates that the BMD approach will be used 

as the method of choice for the determination of the Reference Points for deriving health-

based guidance values and margins of exposure. To that end, recognising that there are 

practical considerations regarding its introduction and wider use in EFSA, and recognising 

that its application requires a level of expert judgement and modelling expertise, the Scientific 

Committee proposes that training in dose-response modelling and the use of the software be 

offered to experts in the scientific Panels and EFSA Units. The Scientific Committee would 

then like to review the implementation, experience and acceptability of the BMD approach in 

EFSA‟s work in two years time. 

 

Key words:   Benchmark dose, BMD, BMDL, BMR, NOAEL, dose-response model, 

hazard characterisation, risk assessment, human data, BMDS, PROAST 
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BACKGROUND AS PROVIDED BY EFSA 

Traditionally, when animal data have to be used for risk assessment of chemicals in food, the 

No-Observed-Adverse-Effect-Level (NOAEL) and/or the Lowest-Observed-Adverse-Effect-

Level (LOAEL) for the critical effect of a substance, forms the reference point for the risk 

assessment. However, this approach does not take into account directly the shape of the dose-

response curve, thus all available information is not utilised. The numerical NOAEL/LOAEL 

is also critically dependent on the choice of dose intervals made, the number of subjects at the 

chosen doses, as well as the sensitivity of methods for identifying the critical effect. 

It is widely agreed that the risk assessment of a specific substance at expected human 

exposure levels can be improved if extended use is made of the dose-response curves from 

studies in experimental animals for that substance, in order to better characterise and quantify 

potential risks (FOSIE 2002). The benchmark dose (BMD) approach provides a means of 

achieving this, see EPA 1995. The BMD approach estimates the dose that causes a low but 

measurable target organ effect (e.g. a 5% reduction in body or organ weight or a 10% increase 

in the incidence of kidney toxicity). By calculating the lower confidence limit of that 

estimated dose, the uncertainty and variability in the data is taken into account. While this 

lower confidence limit was originally termed the benchmark dose (Crump, 1984), it was later 

denoted and subsequently became known as the benchmark dose lower confidence limit 

(BMDL).  

The BMD approach has also been applied to human data, derived from epidemiological 

studies. Additional points have to be considered when a BMDL is calculated using 

epidemiology data for risk assessment such as the uncertainties associated with the 

quantitative estimation of human exposure, and the effect of confounding factors. 

Neither the former EC Scientific Committee on Food nor EFSA have systematically used the 

BMD approach so far. However, experimental data from which a BMD has been calculated 

are submitted from time to time. The BMDL has been proposed by the EFSA as the reference 

point for the estimation of margins of exposure for substances that are both genotoxic and 

carcinogenic, an approach that was used by the Joint FAO/WHO Expert Committee on Food 

Additives (JECFA) at its meeting in 2005 (JECFA, 2006a). There is a clear need for 

transparent and scientifically justifiable approaches to be used when risks are assessed by the 

Scientific Committee and the Scientific Panels of EFSA. The proposed task is to assess the 

existing information on the utility of the BMD approach and to make recommendations on 

whether EFSA should use this approach and under which circumstances this is considered 

appropriate. Furthermore, guidance is needed for the selection of appropriate uncertainty 

factors when using a BMDL as a reference point. 
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TERMS OF REFERENCE AS PROVIDED BY EFSA 

Following the suggestion of the Scientific Committee for a self-task on this subject, the 

European Food Safety Authority requests the Scientific Committee to: 

 draft a document on advantages and limitations of the use of the benchmark dose 

approach as opposed to the traditionally used no-observed-adverse effect levels.  

 prepare an opinion of the preferred approach to be used for risk assessments conducted 

by EFSA‟s Panels and Expert Groups, and 

 in case the BMD approach would be considered the most appropriate approach for 

defined situations in regulatory risk assessments, to provide guidance on a harmonized 

introduction of this approach, as appropriate, in regulatory risk assessments carried out 

by EFSA‟s Panels and Expert Groups, including guidance for the selection of 

appropriate uncertainty factors when using BMDL as a starting point. 
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ASSESSMENT 

1. Introduction 

This document primarily addresses the analysis of dose-response data from experimental 

studies but also considers the application to data from observational epidemiological studies. 

Similar approaches can also be applied to ecotoxicity studies but are not further considered in 

this opinion. Toxicity studies are conducted to both identify and characterize the potential 

adverse effects of a test material.  Analysis of the data obtained in these studies is structured to 

identify a dose that can be used as a starting point for human health risk assessment. The dose 

used for this purpose, however derived, is referred to in this paper as the Reference Point 

(RP). This term has been used already by EFSA in the opinion of the Scientific Committee on 

a harmonised approach for risk assessment of substances which are both genotoxic and 

carcinogenic (EFSA 2005), and is therefore preferred to the equivalent term Point of 

Departure (PoD), used by others such as US EPA. 

The No-Observed-Adverse-Effect-Level (NOAEL) is a RP that has been commonly used in 

risk assessment of non-genotoxic substances. The NOAEL has a long history of use in the 

regulatory process of human risk assessment, and is the usual RP for estimating health-based 

guidance values such as acceptable daily intakes (ADIs) for food additives and pesticide 

residues, and tolerable daily intakes (TDIs) or tolerable weekly intakes (TWIs) for 

contaminants. As the NOAEL is known to have some limitations (see following sections) 

alternative methods have been explored in recent years. The Benchmark Dose (BMD) 

approach arose as an alternative way of defining a RP. The present paper explores this method 

for deriving a RP and how it compares to the current convention of using a NOAEL for 

determining a RP. 

Both the EFSA (2005) and the Joint FAO/WHO Expert Committee on Food Additives 

(JECFA, 2006a) have proposed the use of the BMD approach for deriving the RP for 

calculation of the margin of exposure for substances that are both genotoxic and carcinogenic. 

The US-EPA has used the BMD approach for many years for setting Reference Doses (RfDs) 

for non-genotoxic compounds (although the NOAEL is also used for this purpose, on a case 

by case basis) and to calculate the reference point and cancer slope factors for carcinogens. 

Outside the U.S. there has not been widespread use of the BMD approach for setting a RP for 

non-genotoxic substances, although in individual cases (e.g. World Health Organization 

(WHO), European Medicines Agency (EMEA), EFSA) the BMD approach was part of the 

risk assessment.  

In sections 1 to 3 of this document, the concepts underlying both the NOAEL and BMD 

approaches are discussed with some illustrative examples. In these sections, it is outlined why 

the Scientific Committee considers the BMD approach as the more powerful approach. 

Section 4 discusses the potential impact of using the BMD approach for hazard/risk 

characterisation and risk communication while Section 5 summarizes how the BMD approach 

may be applied in practice, and provides a number of recommendations regarding its 

application. In the Appendix, a practical guidance is given on how to operate the software and 

how to interpret the output generated by the software. 
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2. Hazard identification: selection of potential critical endpoints 

Toxicity studies are designed to identify the adverse effects produced by a substance, and to 

define the dose-response relationships for the adverse effects detected. While in some cases 

human dose-response data are available, most risk assessments rely on animal studies. The 

aim of hazard identification is to identify potential critical endpoints that may be of relevance 

for human health. An important component is the consideration of dose dependency of 

observed effects. Traditionally this is done by visual inspection, together with conventional 

statistical tools, e.g. pair-wise statistical evaluations of the data. Alternatively dose-response 

modelling approaches (like the BMD-approach) can be used.  

Selection of the critical effect should not be based on the statistical procedures only. 

Importantly, additional toxicological arguments should be taken into account in the evaluation 

of a full toxicological data package. Use of the BMD approach does not remove the need for a 

critical evaluation of the response data3 and an assessment of the relevance of the effect to 

human health. 

The result of this first step is the identification of potential critical endpoints that should be 

analyzed in more detail as described in the next sections.  

 

3. Using dose-response data in hazard characterisation 

The nature of the dose-response relationships is explored in detail in hazard characterisation. 

For most toxicological effects, the overall aim of the process is to identify a dose without 

appreciable adverse health effects in the test animals under the experimental conditions. The 

RP from the toxicity studies is then used to calculate a level of human intake at which it is 

confidently expected that there would be no appreciable adverse health effects, taking into 

account uncertainty and variability such as inter- and intra-species differences, suboptimal 

study characteristics, missing data.  

Hazard characterisation in risk assessment requires the use of a range of dose levels in animal 

toxicity studies. Doses are needed that produce effects which are large enough to be 

observable given the small sample sizes used in animal studies. In addition, doses are needed 

to provide information on the lower part of the dose-response relationship.  

Experimental and biological variations affect response measurements; in consequence, the 

mean response at each dose level will include a statistical error. Therefore, dose-response data 

need to be analysed by statistical methods to prevent inappropriate biological conclusions 

being drawn because of statistical errors associated with the data. Currently, there are two 

statistical approaches available for deriving a reference point: the NOAEL approach, and the 

BMD approach. This section reviews these two approaches, and provides a comparison of the 

strengths and limitations of each method.  

                                                 
3 In this opinion, “response” is used as a generic term that refers to both quantal and continuous data. 
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3.1. The NOAEL approach 

The NOAEL approach is applicable to all toxicological effect considered to have a threshold. 

The study NOAEL is derived as follows: 

- For each adverse effect/endpoint, identify the highest experimental dose level where 

effects were not detected, using expert opinion and statistical tests to compare each 

treatment level with the control group.  

- The study NOAEL is the lowest relevant NOAEL obtained for any of the adverse 

effects detected in the study (i.e. for the critical effect of the study).  

Hence, the NOAEL is the highest dose tested without observation of an adverse effect in the 

particular experiment. The numerical value of the NOAEL is thus dependent upon the 

selection of dose levels when the study was designed and on the ability of the study to detect 

adverse effects. Since studies with low power (e.g. small group sizes) and/or insensitive 

methods are able to detect only relatively large effects, these tend to result in higher NOAELs. 

If there is a significant effect at all dose levels, the lowest dose used in the study may be set as 

the lowest-observed-adverse-effect-level (LOAEL). 

It should be noted that in general, identification of the NOAEL is not always a purely 

statistically-based decision. This has advantages and disadvantages. It allows the assessor to 

reject a NOAEL which is not well supported by the data, but it can also lead to different 

decisions. Factors that may be taken into account in identification of the NOAEL include 

whether there is a consistent dose-response relationship and the steepness of the dose-

response curve close to the NOAEL. In situations where the dose-response relationship is not 

monotonic over the lower doses, it is possible that a dose group will be ignored for 

identification of the NOAEL, even when the response is statistically significantly different 

from that of the background response. Similarly, when the magnitude of the response is low, 

even if statistically significant, some assessors may consider it non-adverse and use a higher 

dose as the NOAEL. In contrast, where there is a small, non-significant increased response in 

the dose group below the LOAEL but the dose-response relationship is very steep, the 

NOAEL may be identified as the next dose down (i.e. 2 dose groups below the LOAEL). Such 

decisions require expert judgement and it is clear that different assessors may reach different 

decisions, as happened in the past, e.g. in the evaluation of residues of the veterinary drug 

ractopamine by JECFA (2006b) and the EFSA Panel on additives and products or substances 

used in animal feed [FEEDAP] (EFSA, 2009a). 
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3.2. The BMD approach 

The BMD approach is applicable to all toxicological effects. It makes use of all of the dose-

response data to estimate the shape of the overall dose-response relationship for a particular 

endpoint. The BMD is a dose level, derived from the estimated dose-response curve, 

associated with a specified change in response, the Benchmark Response (BMR), (see Section 

3.5). The BMDL is the BMD‟s lower confidence bound, and this value is normally used as the 

RP.  

The key concepts in the BMD approach are illustrated in Fig. 1 and its legend. This figure 

shows that a BMDL that is calculated, e.g. for a BMR of 5%, can be interpreted as follows:  

BMDL05   =   dose where the response is likely to be smaller than 5% 

where the term “likely” is defined by the statistical confidence level, usually 95%-confidence.  

 
Figure 1: Key concepts for the BMD approach, illustrated by using hypothetical 

continuous data.  

The observed mean responses (triangles) are plotted, together with their confidence intervals. The solid curve is a fitted dose-

response model. This curve determines the BMD (point estimate), which is generally defined as a dose that corresponds to a 

low but measurable change in response, denoted the benchmark response (BMR). The dashed curves represent respectively 
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the upper and lower 95%-confidence bounds (one sided)
4
 for the effect size as a function of dose. Their intersections with the 

horizontal line are at the lower and upper bounds of the BMD, denoted BMDL and BMDU, respectively.  

It should be noted that the BMR is not defined as a change with regard to the observed mean background response, but with 

regard to the background response predicted by the fitted model. This distinction is important because, in general, the fitted 

curve does not hit the observed background response exactly (so that adding the BMR to the observed background response 

will in general not provide the correct intersection with the dose-response at the BMD). In the Figure, the BMD corresponds 

to a 5% change in response relative to background (BMR = 5%). The fitted curve yields an estimated background response of 

8.7, and a 5% increase of that equals 9.14 (8.7 + 0.05*8.7 = 9.14). Thus, the BMD05, of 21.50, is obtained from the 

intersection of the horizontal line, at a response of 9.14, with the fitted dose-response model. In this example, the BMDL05 

has a value of 18. 

 

 

The essential steps involved in identifying the BMDL for a particular study are: 

- Specification of a low but measurable response level, e.g. a 5% or 10% increase or 

decrease in response compared with the background response. This is called the BMR.  

- Fitting a set of dose-response models, and calculation of the BMD and the BMDL for 

those models that describe the data according to statistical criteria, resulting in a range 

of BMDL values for each adverse effect/endpoint (see sections 5.3 & 5.4).  

- Selection of a BMDL for each potentially critical endpoint, see section 5.5 

- An overall study BMDL, i.e. the critical BMDL of the study, is obtained from the 

range of BMDL values for the different potentially critical endpoints (see section 5.5). 

In principle, the BMD approach could be applied to every endpoint measured in the relevant 

studies. The critical effect would then be selected in an analogous way as in the NOAEL 

approach, that is, as the endpoint resulting in the lowest BMDL, but also taking additional 

toxicological arguments into account, just as in the case of the NOAEL approach.  

In the NOAEL approach the decision to accept a dataset for deriving a NOAEL as a potential 

RP is important since poor or limited data (e.g. due to high variability within the control 

group, high limit of detection of quantitative methods, small sample sizes) will tend to result 

in high NOAELs. Acceptability of the data will therefore depend upon expert judgement. In 

contrast, the BMD approach itself provides a formal quantitative evaluation of data quality, by 

taking into account all aspects of the specific data. When the data are relatively poor or 

uninformative, the resulting BMDL for that dataset will tend to be low. But the meaning of 

that BMDL value remains as it was defined: it reflects a dose level where the associated effect 

size is unlikely to be larger than the BMR used.  

 

                                                 
4 In this opinion, a lower (or upper) 95%-confidence bound (one-sided) is equivalent to the lower (or upper) limit of a two-

sided 90%-confidence interval.  
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Nonetheless, it might happen that the data are so poor that using the associated BMDL as a 

potential RP appears unwarranted, and the dataset may need to be discarded. This might be 

decided when the confidence intervals around the BMD are wide or when different models 

result in widely different BMDL values. Some guidance on this issue is given in section 5.5 

The most well known BMD software is the benchmark dose software (BMDS) developed by 

the U.S. EPA (www.epa.gov/ncea), and the PROAST software developed by RIVM 

(www.rivm.nl/proast) 

 

3.3. Interpretation and properties of the NOAEL and the BMD 

The NOAEL is a dose level where generally no statistically significant differences in response 

are observed, compared with the background response. This implies that the NOAEL could 

reflect a dose level where effects are too small to be detected in that particular study, and 

therefore the size of the possible effect at the NOAEL remains unknown. A straightforward 

way of gaining insight into this is by calculating a confidence interval for the observed change 

in response between the control group and the NOAEL dose group. 

The NOAEL is not necessarily a “no effect” dose, although it is sometimes interpreted as 

such. However, as the animal studies discussed in section 3.5 show, the size of the effect at 

the NOAEL is, on average over a number of studies, close to 10% (quantal responses) or 5% 

(continuous responses). Here, the size of effect for quantal responses is expressed as extra 

risk. Extra risk is defined as an absolute change in frequency of response (additional risk) divided by 

the non affected fraction in the control population (100 minus the background response in %)5. For 

continuous responses the effect size is expressed as a percent change in mean response6. For 

an individual NOAEL the size of effect remaining statistically non-significant might be 

smaller, or greater than these values. This is illustrated below (Table 1), where for a number 

of recently evaluated substances the upper bound of effect at the NOAEL was calculated. 

Such additional information is, however, not reported in current applications of the NOAEL 

approach. In the BMD approach, the potential size of the effect (i.e. the benchmark response, 

BMR) is by definition known.  

For a limited number of compounds, the Scientific Committee determined upper bounds for 

the effect size that are summarized in table 1. For quantal endpoints, the upper bounds (which 

relate to extra risk) vary between around 3 and 30%. This illustrates that in some cases the 

extra risk at the NOAEL could be greater than 10%, which is the recommended BMR level 

for quantal data (see Section 5.4). Similarly, for this limited number of compounds, it is found 

that the upper bound of the effect size at the NOAEL for continuous endpoints could be as 

small as 3%; but more often it was in the order of 10%, which is high compared with the 5% 

recommended for the BMR for continuous data (see section 5.4). In one of the examples, with 

a highly variable clinical-chemistry parameter, the upper bound of effect was as high as 260%. 

                                                 
5 For example, when the additional risk is 8.5% and the background response is 15% than the extra risk is 8.5/(100 – 15) = 

10%. 

6 For example, a decrease in average BW from 100 g to 95 g would make an effect size of 5%.  
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Table 1: Illustrations of upper bounds7 of effect at NOAELs related to 10 compounds evaluated previously by JMPR or EFSA.  

Compound  

(source +year) 
Endpoint Quantal data Continuous data 

References 

  
Upper bound 

extra risk (%)
8
 

Upper bound  

percent change 

(%)
9
 

 

Thiodicarb (JMPR 2000) splenic extramedullary haematopoiesis 21  www.inchem.org/documents/jmpr/jmpmono/v00pr09.htm 

Carbaryl  (JMPR 2001) vascular tumours 15  www.inchem.org/documents/jmpr/jmpmono/2001pr02.htm 

Spinosad (JMPR 2001) thyroid epithelial cell vacuolation 2.7  www.inchem.org/documents/jmpr/jmpmono/2001pr12.htm 

Flutolanil  (JMPR 2002) erythrocyte volume fraction  9 www.inchem.org/documents/jmpr/jmpmono/2002pr07.htm 

 haemoglobin concentration  9.7  

 mean corposcular haemoglobin  3  

 decreased cellular elements in the spleen  30   

Metalaxyl (JMPR 2002) serum alkaline phosphatase activity   260 www.inchem.org/documents/jmpr/jmpmono/2002pr09.htm 

 serum AST  100  

Cyprodinil (JMPR 2003) spongiosis hepatitis 5.1  www.inchem.org/documents/jmpr/jmpmono/v2003pr03.htm 

Famoxadone (JMPR 2003) cataracts 29  www.inchem.org/documents/jmpr/jmpmono/v2003pr05.htm 

 microscopic lenticular degeneration 29   

Tributyltin  (EFSA 2004) testis weight  9.1 
www.efsa.europa.eu/EFSA/efsa_locale-

1178620753812_1178620762916.htm 

Fumonisin  (EFSA 2005) nephrosis 8.6  
www.efsa.europa.eu/EFSA/efsa_locale-

1178620753812_1178620807204.htm 

Deoxynivalenol (EFSA 

2004) 
body weight  10.5 

www.efsa.europa.eu/EFSA/efsa_locale-

1178620753812_1178620763160.htm 

Ethyl lauroyl arginate (EFSA 

2007) 
white blood cell counts  23 

www.efsa.europa.eu/EFSA/efsa_locale-

1178620753812_1178622334379.htm 

                                                 
7   As calculated by the Scientific Committee. 
8   Two-sided 90%-confidence interval for extra risk was calculated by the likelihood profile method 
9  Two-sided 90%-confidence interval was calculated for the difference on log-scale, and then transformed back, resulting in the confidence interval for percent change (see Slob 2002 for further 

statistical assumptions). 
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The BMD approach involves the use of a statistical method, which uses the information in the 

complete dataset instead of making pair wise comparisons using subsets of the data. In addition, 

the BMD approach can interpolate between applied doses, while the NOAEL approach is 

restricted to these doses. Therefore, a BMDL is always associated with a predefined effect size 

for which the corresponding dose has been calculated, while the NOAELs represent a 

predefined dose and the corresponding potential effect size is mostly not calculated. Therefore, 

a BMDL value gives more information than a NOAEL, by explicitly indicating the upper bound 

of effect at that dose as defined by the BMR.  

An inherent consequence of the BMD approach is the evaluation of the uncertainty in the 

calculated BMD: it is reflected by the confidence interval around the BMD. This is not 

normally done with the NOAEL approach. This is a difference that is particularly important in 

cases where the data are limited, or show much scatter. Although in such cases a NOAEL can 

often be derived, the uncertainty in the value obtained is usually not quantified. 

The data requirements of the NOAEL approach for the purpose of risk assessment have been 

incorporated into internationally agreed guidelines for study design, e.g. OECD guidelines for 

the testing of chemicals. However, the utility of the data depends not only on these global 

aspects regarding study design (e.g. number of dose groups, group sizes), but also on aspects of 

the quality of the specific study, such as actual doses selected and variability in the responses 

observed. While in the NOAEL approach, the utility of the data is based to a considerable 

extent on a priori considerations such as study design, a BMD analysis is less constrained by 

these factors, as discussed above. In addition, it goes further, by evaluating data quality taking 

the specifics of the particular dataset into account (e.g. the scatter in the data, dose-response 

information). In this way, a more informed decision on whether a dataset is acceptable for 

deriving the RP is possible. It should be noted that the BMDL has already accounted for the 

quality of the particular dataset (by being a lower bound estimate), so that data quality is a less 

crucial issue than it is for the NOAEL. 

Although the current international guidelines for study design have been developed with the 

NOAEL approach in mind, they offer no obstacle to the application of the BMD approach. The 

current guidelines may, however, not be optimal for the BMD approach. As these guidelines are 

revised, e.g. within the OECD Test Guidelines Programme, the need to provide data better-

suited for the BMD approach should be taken into account.  

 

3.4. NOAEL and BMD approach: some illustrations 

This section provides some illustrations of the NOAEL and BMD approaches to dose-response 

assessment. In the first and second example, real dose-response data from toxicity studies are 

used to illustrate the NOAEL approach vs. the BMD approach, in the case of continuous and 

quantal response data, respectively. The third example relates to human dose-response data.  
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Example 1: Continuous dose-response data  

This example relates to relative kidney weights, which are continuous response data. In 

continuous data a numerical value is measured for each subject. The BMR in continuous 

responses should be interpreted as a measure of the degree or severity of the effect, as opposed 

to the BMR in quantal data which reflects a change in incidence (see example 2).  

To illustrate the differences between NOAEL and BMD approaches, both will be applied to this 

particular dataset. In the NOAEL approach each dose group is compared with the response in 

the control group, and, as shown in the last column of Table 2, effects at doses of 300 and 600 

mg/kg are significantly different at p < 0.05, while the effect at the lowest dose (75 mg/kg) is 

non-significant. Based on the criterion of a statistically significant result, 75 mg/kg would be 

designated as the NOAEL. Nonetheless, the upper 95%-confidence bound (one sided) of the 

effect that could occur at this dose level is a 7.4% increase in relative kidney weight (Table 2).  

Table 2: Pair-wise comparison of dose groups, data from Fig. 2 

Dose N Geometric 

mean 

ES (%) Lower 95%-confidence 

bound (one sided) of ES 

(%)** 

Upper 95%-confidence 

bound (one sided) of ES 

(%)** 

t-statistic p-value  

0  5 7.16               

75 5 7.35   2.6   -2.0 7.4 0.99 0.17 

300  5  7.72 7.8   3.0   12.9 2.88 0.006 

600  4* 8.19  14.4  9.0 20.1 4.85 < 0.001 

GM = geometric mean  

ES = effect size (in percent change compared to response at dose zero) 

* = one animal died at the top dose 

** Two-sided 90%-confidence interval was calculated for the difference on log-scale, and then transformed back, resulting in the 

confidence interval for percent change (see Slob 2002 for further statistical assumptions) 

 

To illustrate the BMD approach for the same dataset, a dose-response model (y = a exp(b x) ) 

was fitted to the data, and a BMR representing a 5% increase in relative kidney weight was 

used (see Fig. 2). The output of this model results in a BMD05 of 221 mg/kg and a BMDL05 (at 

BMR = 5%) of 171 mg/kg (see legend of Fig. 2).  

In this dataset the BMDL05 is higher than the NOAEL (171 vs. 75 mg/kg). Nonetheless, it can 

be stated that the effect size at the BMDL05 is smaller than 5% (with 95% confidence), while 

according to the pair-wise comparison (see Table 2) it can only be stated that the effect size at 

the NOAEL is smaller than 7.4% (again with 95% confidence). In other words, the confidence 

in the reference point provided by the BMDL is greater than that provided by the NOAEL. This 

illustrates that the BMD approach makes better use of the information in data by analysing the 

complete dataset, rather than making comparisons between single dose groups and the 

background response.  
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Figure 2: Relative kidney weights (mg/kg bw) in five individual animals per dose.  

Larger circles represent group (geometric) means. The solid curve is the fitted dose-response model and the dashed lines 

indicate the BMD at a BMR of 5%. At the time of the preparation of this document, this feature was not implemented in 

BMDS. 

BMDU = upper confidence bound for BMD. 

 

 



 

 

The EFSA Journal (2009) 1150, 17-72 

 

Example 2: Quantal response data 

For quantal data, the BMR is defined as a specified increase in incidence over background. A 

BMR of 10% (extra risk) is used in the following example, illustrated in Figure 3.  

Here, the mid-dose and low-dose incidences are not statistically significantly different from the 

background response. Hence, the middle dose of 450 mg/kg is the NOAEL for this endpoint in 

this study. In this case, a pair-wise comparison with the background response results in a very 

large upper 95%-confidence bound (one sided) for the effect size at the NOAEL: an extra risk10 

value of around 47%. 

Modelling the dose-response data (see Fig. 3) using a log-logistic model as an illustration 

results in a BMD10 of 399, and a BMDL10 of 171 mg/kg, considerably lower than the NOAEL.  

The BMD methodology allows for the statement that the associated effect at the BMDL is not 

greater than 10% (with 95% confidence), which is considerably lower than the upper bound of 

effect of around 47% at the NOAEL, as calculated based on a pair-wise comparison of the 

background response and the NOAEL dose group. Again, this illustrates the fact that the BMD 

approach makes better use of the available information in the data. 

 

                                                 
10 The upper 95%-confidence bound (one sided) for extra risk was estimated by the likelihood profile method, using the data in 

the controls and at the NOAEL only, i.e., without using an assumed dose-response model.   
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Figure 3: Analysis of quantal data as obtained by PROAST and BMDS software.  

Fraction of affected animals in a toxicity study with 10 animals in each dose group. A dose-response model has been fitted to the data (solid curve) and the horizontal line indicates the BMR of 

10% extra risk compared to the response at zero dose (according to the curve). Log-logistic model was fitted by PROAST and BMDS (see Table 3); the figures presented reflect the way in 

which the software generates the graphs. 
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Example 3: Human dose-response data. 

The analysis of human dose-response data is generally more complicated than that of typical 

dose-response data from animal studies, due to the presence of confounders, and imprecision 

in the exposure estimates. The example provided here does not deal with these complexities 

and aims only to illustrate one particular aspect of human data that may occur, that of very 

small exposure groups. In specific cases, exposure levels are estimated for each individual 

person. The NOAEL approach could then only be applied if the doses are categorised into a 

limited number of dose groups. However, such would result in a loss of information. In 

contrast, the BMD approach can be applied without categorisation,, as illustrated in Fig. 4. In 

this example, every person was scored as showing either normal (=0) or abnormal (=1) eye-

hand coordination. It is hard to detect any dose-response relationship by visual inspection for 

these types of observations. It is however feasible to fit a dose-response model to these data, 

and demonstrate the existence of a dose-related response. In this example, the curve 

associated with the fitted model represents the probability of any person responding at a given 

exposure level. The fitted model resulted in a statistically significant improvement of the fit 

compared with a fitted horizontal line, suggesting that there is a statistically significant effect 

of the exposure. The BMD approach uses this curve to estimate the exposure level where the 

extra risk is 10% (see section 5.7). 

The example further illustrates that the BMD approach may apply in situations without any 

controls: the background response level can be estimated by the fitted dose-response curve. 
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Figure 4: BMD analysis of human dose-response data with individual exposures.  

Observed eye-hand coordination scores (0.0 = normal, 1.0 = abnormal) in individual workers (the plotted numbers indicate 

the number of persons at that exposure level) as a function of exposure. A dose-response model has been fitted to these data; 

the BMD10 (see dashed lines) was 173, and the BMDL10 was 92. A BMR of 10% extra risk was used. 
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3.5. Selection of the benchmark response (BMR) 

Derivation of a RP using the BMD approach requires the selection of a specified value for the 

benchmark response (BMR). Here, default values for the BMR are proposed with a brief 

justification for their choice.  

Ideally, the BMR would reflect an effect size that is negligible or non-adverse. However, the 

practical constraint is that the BMR chosen should not be too small, to avoid having to 

estimate a BMD by extrapolation outside the range of observation, such that the BMDL would 

then depend heavily on the model used.  

Initially, the BMD approach was mainly applied to quantal data, and BMR values of 1%, 5% 

or 10% extra risk have been proposed to be used for such data from animal studies (Crump, 

1984; EPA, 1995). Use of a 5% BMR is practicable for some but not all toxicity datasets and 

10% appears more appropriate for quantal data because the BMDL can become substantially 

dependent on the choice of dose-response model at lower BMRs (Sand et al., 2002). The 

BMDL10 has been reported to be on average close to the NOAELs for lethality data (Fowles et 

al., 1999). Similarly, for quantal data in developmental toxicity, it was found that the BMDL 

was, on average closer to the average NOAEL for a BMR of 10% than for a BMR of 5% or 

1%. But in this case the BMDL10 was still on average 2-fold lower than the NOAEL (Allen at 

al. 1994). In human studies BMRs as low as 1% have been applied, which might be justified if 

the number of subjects is very large (e.g., a BMR of 1% was used for deriving BMD/BMDL 

for aflatoxins from human studies – EFSA 2007). 

For continuous data, a 5% response level is often within the range of observation, and hence 

this BMR would provide estimates of BMD and BMDL that are not critically model 

dependent (Woutersen et al., 2001; Piersma et al. 2000; Sand et al. 2006). A re-analysis of a 

large number of National Toxicology Program (NTP) studies (Bokkers and Slob, 2007) 

showed that the BMDL05 was, on average, close to the NOAEL derived from the same dataset 

(see Fig. 5), while in most individual datasets they differed within one order of magnitude. 

Similar observations have also been made in studies of foetal weight data (Kavlock et al., 

1995).  

In conclusion the Scientific Committee proposes that a default BMR value of 10% be used for 

quantal data and 5% for continuous data from animal studies. As stated previously, the default 

BMR may be modified based on statistical or toxicological considerations. 
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Figure 5: Histogram of 395 NOAEL/BMDL05 ratios (log10-scale) for the same dose-

response data in rat and mouse (NTP) studies.  

The BMDL relates to a BMR of 5%. Six endpoints were considered: BW, relative and absolute liver and kidney weight, red 

blood cell counts. The geometric mean of the ratios is close to 1, i.e. on average the NOAEL is similar to the BMDL05. Data 

from Bokkers and Slob (2007).  

 

4. Consequences for hazard/risk characterisation and risk communication 

In the previous section the BMD approach has been introduced in the context of deriving a 

reference point (RP). The next step in hazard characterisation is the setting of margins of 

exposure (MOEs) for substances that are both genotoxic and carcinogenic or health-based 

guidance values, such as acceptable daily intakes (ADIs) for food additives and pesticide 

residues, and tolerable daily intakes (TDIs) or tolerable weekly intakes (TWIs) for 

contaminants, for substances which are not both genotoxic and carcinogenic. 

 

4.1. Setting health-based guidance values 

In deriving an ADI/TDI from a RP, uncertainty factors are applied to the NOAEL (WHO 

1987). It has been suggested that larger or additional uncertainty factors might be appropriate 

when a BMDL is used as the RP. The argument used is that the BMDL does not reflect a “no-

effect” dose, in contrast to the NOAEL. This argument is based on the false assumption that a 

NOAEL is associated with the complete absence of any effect. As discussed (in Section 3.5), 

the default values of the BMR are such that the BMDL on average coincides with the 
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NOAEL. Further, it was shown in section 3.3 that the potential magnitude of the effect at the 

NOAEL can be even greater than the specified effect size (BMR) associated with the 

BMD/BMDL. Taking these considerations into account, an additional uncertainty factor, 

beyond those normally applied is not necessary. The health-based guidance value derived 

from the BMDL can be expected to be as protective as the one derived from the NOAEL, i.e, 

on average over a large number of risk assessments. In conclusion, the default values for 

uncertainty factors currently applied to the NOAEL are equally applicable to the BMDL. 

In some studies, there may be an effect at the lowest dose tested which is statistically or 

biologically significantly different from the response in the control group (LOAEL). In the 

NOAEL approach, the LOAEL is traditionally divided by an additional uncertainty factor. 

However in the BMD approach, it is often possible to derive a BMDL from such data at the 

desired BMR and there would be no need for such an additional uncertainty factor. If the 

dose-response data do not allow a BMR at the desired level (see section 3.5), then a BMR at a 

higher response can be selected and an additional uncertainty factor to the BMDL may be 

necessary.  

 

4.2. Risk assessment of substances which are both  genotoxic and carcinogenic 

The Scientific Committee (EFSA, 2005) concluded that, from the options considered, the 

MOE approach would be the most appropriate one in the risk assessment of substances that 

are both genotoxic and carcinogenic. They proposed to use the BDML10 as the reference point 

(RP), i.e. the BMDL10 should constitute the numerator of the MOE.  

 

4.3. Potency comparisons 

Comparisons of the potencies of different substances, or of the same substance under different 

exposure conditions, require information on the doses necessary to produce the same size of 

effect/response. The BMD approach is a suitable tool for such analyses, as it enables 

interpolation between applied doses. For the same reasons the BMD approach is also suitable 

for the derivation of Toxic Equivalency Factors (TEF) for individual substances in a mixture 

that share a common mode of toxicological action (the BMD approach has been used to 

provide relative potency estimates for different organophosphates
11

). Relative potency 

estimates obtained using the BMD approach are also more appropriate than NOAELs for use 

in mode of action analyses (Boobis et al., 2006). The PPR Panel has published a recent 

Opinion in which the BMD, rather than BMDL, was preferred for determining relative 

potency estimates (EFSA, 2008). 

                                                 
11 See http://www.epa.gov/pesticides/cumulative/pra-op/i_b-f.pdf 
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The BMD approach is suitable for analysing the effects of covariates on the dose-response, 

such as sex, exposure duration, or co-exposure to another chemical. For example, the factor 

sex can be included as a covariate in the dose-response analysis, and in this way it can be 

assessed if males and females show statistically significantly different dose-responses. The 

finding that one sex is more sensitive to the chemical than the other may be useful information 

in the risk assessment. In addition, when the dose-responses for the levels of males and 

females or other subpopulations are found to have a similar form, the dose-response data from 

both sexes can be combined. This effectively increases the overall sample size of the analysis, 

while in some cases it may happen that the total number of applied doses effectively increases. 

Likewise dose-response data from different studies with similar characteristics could be 

combined, with study as a covariate, again to make use of all data available (Murata et al., 

2002).  

While the use of covariates in the statistical analysis has so far been limited in the analysis of 

animal studies, it is common practice in the analysis of human data. The latter is further 

discussed in section 5.7  

 

4.4. Probabilistic risk assessment 

Probabilistic approaches in risk assessment are receiving increasing attention, regarding both 

exposure assessment (e.g. Gibney and Van der Voet, 2003; Fryer et al., 2006; Tressou et al. 

2004) and hazard characterisation (e.g. Baird et al. 1996; Swartout et al. 1998). The BMD 

approach is compatible with probabilistic hazard characterisation, as the uncertainty in the 

BMD can be quantified in the form of a distribution (Slob and Pieters, 1998). Further, the 

dose-response modelling behind the BMD approach provides a means of estimating the 

magnitude of a potential health effect in the human population, given a particular exposure 

level (e.g. the current exposure in the population). This has been done, for example, for the 

mycotoxin deoxynivalenol (Pieters et al., 2004).  

 

4.5. BMD vs. NOAEL: Perception of safety 

It has been argued that the introduction of the BMD approach may raise problems in 

communication with risk managers, politicians, consumer organisations and the public 

because the BMD is perceived as an effect level. On the other hand, the NOAEL is sometimes 

perceived incorrectly as a level that is without any effects,. However, as explained in section 

4.1, use of the BMDL in risk assessment does not change fundamentally the basic approach or 

assumptions.
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An argument in favour of the BMD approach is that this approach provides a higher level of 

confidence in the conclusions in any individual case since the BMDL takes into account the 

quality of the data better than the NOAEL. This does not imply that re-evaluation of all 

previous data is needed, because as stated in section 4.1, the NOAEL and BMDL are expected 

to be similar on average. A review would certainly not be necessary in circumstances where 

large margins exist between the estimated daily intake (EDI) and the health based guidance 

value, e.g. ADI. For substances where the actual EDI appears to be close to or exceeding the 

health-based guidance value, a refined risk assessment might result from a re-evaluation of the 

data, using the BMD approach. 

It also has to be recognised that there are a number of sources of uncertainty in a risk 

assessment, and dose-response modelling is only one of these. In assessing the likely benefits 

of applying the BMD approach in a given risk assessment, some consideration should be 

given to the sources of uncertainty, their magnitude and the likely impact in the assessment, 

i.e. more or less conservative. Such information will help to determine whether the likely 

refinement provided by the BMD approach will result in a meaningful change in the risk 

assessment. The foregoing is relevant when the only objective of using the BMD approach is 

to improve confidence in the reference point.  

In addition, when an health-based guidance value is based on the BMD approach and takes 

into account all the data from the dose-response curve the BMD method provides a better 

basis to quantify the risk in situations where the health-based guidance value is exceeded, and, 

thus, is a better basis for risk communication. 

Finally it is important to realize that health-based guidance values like the ADI or TDI are 

defined as a level to which an individual may be exposed daily over his or her lifetime without 

appreciable health risk, and this definition does not change when the health-based guidance 

value is derived from a BMDL instead of a NOAEL.  

 

5. Guidance to applying the BMD approach 

This section provides an overview of how to derive a BMD and BMDL from dose-response 

data and recommendations are given on particular choices to be made. Although currently 

available software allows for the application of the BMD approach without detailed 

knowledge of computational technicalities, a conceptual understanding of the method, as 

described in this opinion, is a prerequisite for correct interpretation of the results. 

The application of the BMD approach may be summarized as a process involving the 

following steps: 

1. Specification of type of dose-response data 

2. Specification of the BMR 

3. Selection of candidate dose-response model(s) 
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4. Identification of acceptable models 

5. Estimating the BMD, and establishing the BMDL as the RP 

These steps are discussed below. 

 

5.1. Specification of type of dose-response data 

Endpoints not showing dose response relationships are normally not used for deriving a BMD. 

The decision to disregard endpoints can be done by visual inspection of the data or more 

formally by including them in the BMD analysis in which case the decision is made on a 

statistically non-significant trend in step 3. 

Response data may be of various types, including continuous, quantal and ordinal. The 

distinction between data types is important for statistical reasons (such as assumption of 

underlying statistical distribution), but also for the interpretation of the BMR. See section 3.4 

(examples 1 and 2) for the interpretation of the BMR in continuous and in quantal data. 

Ordinal data may be regarded as an intermediate data type: they arise when a severity category 

(minimal, mild, moderate, etc) is assigned to each individual (as in histopathological 

observations). Ordinal data could be reduced to quantal data, but this implies loss of 

information, and is not recommended.  

For continuous data, the individual observations should ideally serve as the input for a BMD 

analysis. When no individual but only summary data are available, the BMD analysis may be 

based on the combination of the mean, the standard deviation (or standard error of the mean), 

and the sample size for each treatment group. Using summary data may lead to slightly 

different results compared with using individual data. For quantal data the number of affected 

individuals and the sample size are needed for each dose group  

 

5.2. Specification of BMR 

For quantal data the BMR is defined in terms of an increase in the incidence of the lesion / 

response scored, compared with the background response. The common way of doing this is 

either by additional risk or extra risk, see section 3.4. For quantal data, the recommended 

default value is a BMR of 10% extra risk.  

For continuous data the BMR could be defined in various ways. The way recommended here 

is to define it as a percent change in the average magnitude of the response variable as 

compared to the predicted background response. The recommended default value is a BMR of 

5% (e.g. a 5% decrease in red blood cells).  

For some continuous data (e.g. cognitive scores) the BMR may best be defined in a similar 

way as for quantal data, i.e. in terms of an increase by, say, 5% of the number of subjects with 

an abnormal response. This type of BMR is related to the so-called hybrid approach (Crump 

2002).  
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5.3. Selection of candidate dose-response models 

Different models which fit the data equally well can result in different BMDs and BMDLs, 

reflecting model uncertainty. To take this aspect of uncertainty into account, various models 

need to be fitted to the same dataset. This section provides a discussion of candidate models, 

in particular those that are currently available in the BMD software packages (e.g. BMDS, 

PROAST). This software provides adequate and flexible sets of models for analysing the 

range of datasets. If other software is used, it is recommended to apply the same set of 

candidate models. 

Table 3 summarizes these models. Some of them are listed as part of a family of nested 

models, i.e., a simpler model (having few parameters) can be extended to a more complex 

model (having more parameters) such that it includes the simpler model. Table 3 illustrates 

the nested structure for the exponential family of models (see also below).  

The advantage of using a family of nested models is that it can be determined which model 

has the appropriate number of parameters: no more than needed, but also not less than that. 

For instance, when the dose-response is nearly linear, a two-parameter model would suffice, 

while for a sigmoidal dose-response a three-parameter model at least would be needed (one 

for the location where the response reaches half its maximum, one for the magnitude of the 

maximum response, and one for the steepness of the curve between minimum and maximum 

response). The statistically optimal model can be found by starting with a simple model (with 

few parameters), and then checking whether adding a parameter to the model results in a 

significant improvement of the fit. If so, the model with the additional parameter is accepted. 

This process may be continued until no improvement in the fit can be found, resulting in the 

selection of a model with the optimal number of parameters. The decision whether or not a fit 

has been improved by the addition of a parameter can be based on significance testing, using 

the likelihood ratio test (see section 5.4).   

 

Continuous data 

For continuous data both the exponential family of models and the Hill family are 

recommended due to the following favourable properties: 

- they are always monotonic, 

- they are suitable for data that level off to a maximum response, or show a threshold-

like curvature (see Fig. 6), 

- they have been shown to be flexible enough to describe virtually all dose-response data 

as encountered in practice, 

- they allow for incorporating covariates in a toxicologically meaningful way (see 

below).  
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It should be noted that the Hill family is not currently available as a nested series in the 

BMDS software.  

Table 3 gives each of the members of both the exponential and Hill families. The difference 

between the BMDL for the optimal exponential model and the BMDL for the optimal Hill 

model provides an indication of the degree of model uncertainty in the particular dataset (see, 

for an illustration, Fig. 7 and table 5).  

Occasionally, dose-response data may be expressed such that they include negative values, for 

instance body weight gains decreasing from positive to negative values at high doses. In those 

cases, models with an additive background parameter would be needed. Alternatively, the 

body weight gains could be expressed as ratios (percent changes) rather than differences, if the 

individual body weight data are available. 

The linear model often gives a sufficient description of epidemiological data and may 

therefore be used for deriving a BMD. 

Polynomial models of a higher degree, although common in many statistical analyses, are not 

recommended for dose-response data, as it has several unrealistic model properties (e.g. they 

can result in negative values, which normally is biologically impossible, or they can take a 

non-monotonic shape even when the data do not support this).  

 

Quantal data 

Table 3 lists seven models that are recommended to be used for quantal data. Only the 

linearized multi-stage model (LMS) forms a nested family of models. Therefore, only one 

multi-stage model should be selected from this family and this member used further in the 

BMD analysis.  

 

Modelling constraints for analysis of continuous and quantal data 

To avoid the models having undesirable properties, certain constraints are imposed on the 

model parameters. For instance, since continuous responses are usually not negative, the 

background response parameter (a) is constrained to be positive in the continuous models. In 

quantal models it is constrained to be between 0 and 1 (i.e., 0% and 100% response). Further, 

to avoid curves that have an infinite slope at dose zero (which might be considered 

biologically implausible for most endpoints) the “shape” parameter in some of the models is 

often constrained as follows: 

(continuous data) M3 and M5 in exponential and Hill family:   d > 1 

(quantal data) Log-logistic, Weibull, Gamma12:   c > 1 

                                                 
12 It should be noted that such a constraint is not possible for the log-probit model, as it has the property to always have zero 

slope at dose zero, even though this may not always be apparent from the plot. 
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Table 3: Recommended models for use in the BMD approach
4)

.  

Model Number of model 

parameters 

Model expression 

response (y) as function of dose (x) 

Constraints 

Continuous data
 

 

Exponential family  

     Model 1 
1) 

1 y = a  a>0 

     Model 2 2 y = a exp(bx) a>0 

     Model 3 3 y = a exp(bx
d
) a>0, d>1 

     Model 4 3 y = a [c – (c-1)exp( - bx)] a>0, b>0, c>0 

     Model 5 4 y = a [c – (c-1)exp( - bx
d
)] a>0, b>0, c>0, d>1 

Hill family  

     Model 2 2 y = a [1 - x/(b+x)] a>0 

     Model 3 3 y = a [1 - x
d
/(b

d
+x

d
)] a>0, d>1 

     Model 4 3 y = a [1 + (c-1)x/(b+x)] a>0, b>0, c>0 

     Model 5 4 y = a [1 + (c-1)x
d
/(b

d
+x

d
)] a>0, b>0, c>0, d>1 

Quantal data 
2)

  

Logistic 2 y = 1 / (1 + exp(-a – bx)) b>0 

Probit 2 y = CumNorm(a + bx) b>0 

Log-logistic 3 y = a + (1-a) / (1 + exp(-log(x/b) / c))  10 a , b>0, c>1 

Log-probit 3 y = a + (1-a) CumNorm(log(x/b) / c) 10 a , b>0, c>0 

Weibull 3 y = a + (1-a) exp( (x/b)
c 
) 10 a , b>0, c>1 

Gamma 3 y = a + (1-a) CumGam(bx
c
) 10 a , b>0, c>1 

Linearized multistage (LMS) family
3)

  

    one-stage  2 y = a + (1-a) exp( – bx) a>0, b>0 

     Two-stage 3 y = a + (1-a) exp( – bx – cx
2
) a>0, b>0, c>0 

     Three-stage 4 y = a + (1-a) exp(– bx – cx
2 
– dx

3
) a>0, b>0, c>0, d>0 

a, b, c, d : unknown parameters that are estimated by fitting the model to the data. 

CumNorm: cumulative (standard) normal distribution function.  

CumGam: cumulative Gamma distribution function 

1) Model 1 can be regarded as a model that is nested within any dose-response model: it reflects the situation of no dose-

response (= horizontal line). 

2) For the constraints given here, the models result in increasing dose-response curves  

3) The one-stage model is identical to the quantal linear model as implemented in BMDS; note that in BMDS, this model is 

called “multistage” and the number of stages has to be defined by setting the degree of the polynomial in this model, e.g. 2 

for a two-stage model. 

4) In epidemiology, additional models, e.g. y=a+bx, are also used 
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Figure 6:  The exponential model family presented as a nested family of models.  

Note that models M3 and M4 are not nested to each other. When a model results in a significantly better fit than its 

„predecessor‟, the latter is rejected. These models can also be used for decreasing responses. Note that rejecting model M1 

implies a statistically significant dose-related effect.  

 

5.4. Fitting and accepting models 

The available BMD software takes care of fitting a model, which means finding the values of 

the unknown parameters in the model that make the associated dose-response curve approach 

the data as closely as possible. This is called the best fit and is achieved by maximizing the 

log-likelihood.  

The BMD approach does not aim to find the single statistically best estimate of the BMD but 

rather all plausible values that are compatible with the data; therefore, the goal is not to find 

the single best fitting model, but rather to find those models with an acceptable fit. 

The acceptance of a fitted model is based on two principles. The first principle is that from a 

nested family of models only one member is accepted, by comparing the log-likelihoods of the 

various members in that family, using the likelihood ratio test. As mentioned before, when a 

member with fewer parameters does not show a significantly poorer fit, then this member will 

be preferred.  
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The second principle is that any fitted model should provide reasonable description of the 

dose-response data, according to a goodness-of-fit test with a P value greater than 0.05. There 

are several types of goodness-of-fit tests. The likelihood ratio test is the recommended choice 

here. If this is not available in the software package used, other tests, such as the Pearson chi-

square test should be considered. In the likelihood ratio test, the log-likelihood value 

associated with a fitted model is compared with, and tested against, the log-likelihood value 

associated with the so-called “full model”. The full model simply consists of the observed 

(mean) responses at each applied dose. Hence, the number of parameters equals the number of 

dose groups. If a model‟s fit is not significantly worse than that of the full model, then the 

model may be accepted.  

The likelihood ratio test may be used to test if additional parameters in nested models result in 

a significant improvement of the fit. This test is based on the fact that minus twice the 

difference of the log-likelihood values associated with two models follows a Chi-square 

distribution with number of degrees of freedom equal to the difference in number of 

parameters between the two models. Table 4 provides the critical difference between two log-

likelihoods, given a particular increase in the number of parameters (degrees of freedom). See 

Slob (2002) for more details.  

 

Table 4: Critical difference in log-likelihood values in comparing two nested models.  

df Critical difference 

in log-likelihoods 

 df Critical difference 

in log-likelihoods 

1 1.92  11 9.84 

2 3.00  12 10.51 

3 3.91  13 11.18 

4 4.74  14 11.84 

5 5.54  15 12.50 

6 6.30  16 13.15 

7 7.03  17 13.79 

8 7.75  18 14.43 

9 8.46  19 15.07 

10 9.15  20 15.71 

When the difference exceeds the critical value, the fit of the model with more parameters is better at a 5%-significance level. 

The number of degrees of freedom (df) is equal to the difference in the number of estimated parameters between both models.  

 

It is important to keep in mind that there may be cases where none of the models pass the 

goodness of fit test, while visual inspection of the data appears to show that some models 

adequately describe the observed dose-response. In those cases it might be that the 

assumptions of the goodness-of-fit test are violated (e.g., deviances from the assumed 

distribution, not all of the observations are independent, non-random errors) and the decision 

to accept a particular model needs to acknowledge the high level of uncertainty in the 

assessment.  
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5.5. Estimating the BMD, and establishing the BMDL as the Reference Point 

The BMD analysis should be performed for potentially critical endpoint(s) measured in a 

study: 

 For each potentially critical endpoint, apply the set of models (table 3), and for each of 

the accepted models, calculate the BMD, together with its confidence interval. The 

lower bound of this confidence interval is the BMDL. The default confidence level is 

95% (one-sided). This procedure results in a range of BMDL values, reflecting the 

differences between the models used. 

 Determine the lowest BMDL from this range, to be the overall BMDL for each 

potentially relevant critical endpoint, i.e. the most conservative value in each case. 

 Determine the lowest BMDL from all these endpoints, which will then be the overall 

BMDL for that study. 

Selecting the lowest BMDL amongst those for the same endpoint tends to be conservative, but 

it is recommended to use this until more advanced methods, such as “model averaging” 

(Wheeler and Bailer 2007, 2008) have been fully developed and validated.  

In this way, BMDLs can be determined for various endpoints. If the critical endpoint was not 

established before the BMD analysis, it may then be determined based on the outcomes from 

the BMD analysis in a way analogous to that in the NOAEL approach, i.e. choose the 

endpoint resulting in the lowest BMDL, provided that the effect is relevant to human health.  

When the experimental data provide sufficient information on the dose-response relationship, 

the various models that fit the data will have similar shapes and will yield a narrow range of 

BMDL values. Such BMDL values should provide a secure basis for risk assessment purposes 

and can be used to define a RP for the establishment of a health-based guidance value or for 

the calculation of a MOE (see Section 4).  

In some circumstances, the dose response relationship may not be well defined. For instance, 

there may be large gaps between consecutive response levels. In such datasets the various 

models (see Table 3) that fit the data (according to the statistical criteria discussed above) may 

assume different shapes, and consequently the ranges of BMDL values obtained may be wide. 

These BMDL values would not provide a secure basis for establishing a health-based 

guidance value. Criteria to judge the adequacy of the dose-response data on the basis of the 

range of BMDL values obtained have so far not been established. The Scientific Committee 

proposes that, as a general rule, dose-response data should not result in a range of BMDL 

values from different accepted models that substantially exceeds one order of magnitude. 

When this value is exceeded, several options are available and should be considered on a 

case-by-case basis, e.g. increasing the BMR, re-evaluating the set of models, or model 

averaging. 
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5.6. Illustrations 

Continuous data 

A BMD analysis for a single dose-response data set is illustrated in Fig. 7 and Table 5. Note 

that in this example dataset, the number of dose levels (6) is larger than in typical toxicity 

studies. Both the exponential and the Hill model families were applied to the dose-response 

data set. The table shows the log-likelihood values achieved by each member of both model 

families, as well as by the full model. In this analysis, M3 is selected as the “optimal” model 

within both families of models (in most cases the selected models from different families have 

the same number of parameters). These two models result in BMDLs of 326 and 316 mg/kg 

respectively, and this difference reflects model uncertainty (which is small in this case, as a 

result of the relatively large number of dose groups). Thus, the BMDL for this endpoint would 

be 316 mg/kg, being the lowest BMDL.  

The selection of the optimal model within a nested family can be done by some BMD 

software, but the user can do it by him/herself. As an illustration consider the log-likelihood 

values13 in the third column of Table 5. Keeping in mind which models are nested within 

others (see Fig. 6) the following procedure may be followed. The log-likelihood associated 

with M2 is more than 8 units higher than M1, while it has one more parameter. According to 

the likelihood ratio test, adding a parameter to a model results in a significantly (p=0.05) 

better fit when the log-likelihood has increased by 1.92 or more. Hence, M2 is clearly better 

than M1. Based on the same criterion, M3 is better than M2, while M4 is not better than M2 

(the additional parameter c was estimated to be zero, in which case M4 is equivalent to M2). 

Further, M5 is not better than M3. Hence, M3 is the „optimal‟ model from this nested family. 

Finally, M3 cannot be significantly improved and passes the goodness of fit test: the required 

increase in the log-likelihood value would be 4.74 for an additional 4 parameters.  

                                                 
13 It should be noted that log-likelihood values have no absolute meaning (the value depends on the number of data points, 

for instance). They only have relative meaning, when comparing their values for different models applied to the same 

dataset.   
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Table 5: Results of BMD analysis using two families of models.  

Model 
1)

 Number of model 

parameters 

Log-likelihood BMD05* 

(mg/kg bw) 

BMDL05* 

(mg/kg bw) 

  Exponential Hill Exponential Hill Exponential Hill 

M1 (null model) 1 20.85     

  --  M2 2 28.97 28.61 

         -- M3 3 33.35 ** 33.39 ** 488 479 326 316 

         -- M4 3 28.97 28.61     

                -- M5 4 33.56 33.56 

Full model 7 35.95 

* At BMR of 5%.  

** Optimal model within this family according to log-likelihood criterion. It also passes the goodness-of-fit test, as the full 

model does not result in a significantly better fit. 

1) See Figure 7 and Table 3 for an illustration of models M1 to M5, and their nested structure 

 

 

 
Figure 7: Fitted curves for M3 in the exponential model family (left panel) and for M3 in 

the Hill model family (right panel). See Table 3. 
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Quantal data 

Table 6 and Fig. 8 show the results for various models fitted to a quantal dataset. The 

determination of accepted models is based on the three criteria as discussed above: 

- All models are highly significantly better than the no-response model: the log-

likelihood values are around 50 units higher, where an increase of only 1.92 units (for 

models with 2 parameters) or 3.00 units (for the models with 3 parameters) would 

have been sufficient (see table 4). 

- For the (nested) LMS model, the two-stage model is significantly better than the one-

stage model, since the difference in log-likelihoods is larger than 1.92. Therefore, the 

two-stage model represents the LMS model in this case. 

- Only three of the seven models passed the goodness of fit test: the other models show 

log-likelihoods that are significantly lower than the log-likelihood of the full model.   

The associated BMDLs for the three accepted models range from 1.93 to 2.45 mg/kg, and this 

small range indicates that these dose-response data are suitable for deriving a BMDL10.  

 

Table 6:  Results of BMD analysis of quantal data shown in Fig. 8.  

model number of model 

parameters 

log-likelihood  accepted BMD10 BMDL10 

null model 1 -143.01 --   

LMS: one-stage  2 -56.8 no   

LMS:  two-stage  3 -53.71 no   

logistic 2 -55.63 no   

probit 2 -60.40 no   

Weibull  3 -52.33 no   

log-logistic  3 -49.35 yes 3.28 2.45 

log-probit  3 -49.56 yes 3.16 2.42 

gamma       3 -50.96 yes 2.88 1.93 

full  model     4 -49.33 --   

BMR: 0.10 

Constraint: no 

P-value Goodness of Fit: <0.05 leads to model rejection. If the model passes the goodness-of-fit test, see section 5.4  
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Figure 8: Two examples of the quantal model, Gamma and Weibull fitted to a tumour 

incidence dose-response dataset, using the BMDS software 

The Gamma model was accepted (P=0.071), while the Weibull model was rejected (P=0.014).  
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5.7. Specific issues of human dose-response data 

Dose-response data from observational epidemiological studies may differ from typical 

animal toxicity data in several respects. The main differences relevant to BMD calculations 

are briefly discussed below. 

Exposure data often do not fall into a small number of well defined dosage groups. To apply 

the NOAEL approach, individual exposure data need to be categorised with a consequent loss 

of information. As demonstrated in Example 3, the BMD approach can be readily used with 

individual exposure data. 

Unlike most experimental studies, observational studies may not include an unexposed control 

group, because all individuals may be exposed to some extent, e.g. an atmospheric pollutant, a 

food contaminant. In this case, the BMD approach still applies, since fitting a dose-response 

curve does not necessarily require observations at zero exposure. However the response at 

zero exposure would then need to be estimated by low-dose extrapolation. Hence the BMD 

derived from epidemiological data can be strongly model-dependent (Budtz-Jørgensen et al., 

2001).  

It should also be noted that the estimation of human exposure is often imprecise, and ignoring 

the imprecision may lead to a biased assessment of the dose-response relationship. Statistical 

methods have been developed to tackle this issue and obtain less biased estimates of the dose-

response relationship and of the BMD value (Budtz-Jørgensen et al., 2004; Budtz-Jørgensen, 

2007).  

Response variables in human studies are often subject to confounding factors that may 

interfere with the dose-response of interest. Failure to take a confounding factor into account 

may result in either underestimation or overestimation of the BMD. This is commonly 

addressed by including the confounding factors as covariates, e.g. in a multiple regression 

model. Effect modification may present an additional issue that needs to be taken into 

account, e.g. when a greater vulnerability occurs in elderly subjects. The BMDL should then 

reflect the response in the most vulnerable subpopulation. Effect modification can be 

modelled by including the relevant covariates. Adjustment for confounding or effect 

modification is not possible in BMDS, and only partly in the PROAST software. 

Despite these methodological problems, the BMD analysis has been used with observational 

epidemiological studies in a number of cases (e.g. EFSA, 2009b) 

 

5.8. Reporting of the BMD analysis 

The results of a BMD analysis should be reported in such a way that others are able to follow 

the process.  
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In reporting a BMD analysis for a particular study, it is not necessary to provide information 

on all the endpoints analysed but only for the critical one(s). It should be made clear in a 

narrative why this / these endpoint(s) was / were selected. 

The following information should be provided: 

A. A summary table of the data for the endpoint(s) for which the BMD analysis is 

reported. For quantal endpoints both the number of responding animals and the 

total number of animals should be given for each dose level; for continuous 

endpoints the mean responses and the associated SDs (or SEMs) and sample 

sizes14 should be given for each dose level. For human data similar information 

should be provided along with details on confounding factors.. 

B. The value of the BMR chosen, and the rationale for it. 

C. The software used, including version number 

D. Settings and assumptions of the model fitting procedure 

E. A table presenting the models used and the log-likelihoods, information on 

fitting and accepting models, and the BMDs and the BMDLs for the accepted 

models. 

F. At least one plot of a fitted model to the data for the critical endpoint(s), 

including the one for the lowest BMDL 

G. Conclusion regarding the BMDL of this particular study. 

The reporting of a BMD analysis is illustrated below for a quantal and for a continuous 

dataset. In both cases one single endpoint is analysed, which is assumed to represent the 

critical effect. The reader is referred to the appendix for a brief guidance on how to use the 

BMDS and the PROAST software.  

Whilst efforts have been made in this opinion to provide guidance on the use of BMD 

software, users should be aware that such software is still evolving and new versions are 

released frequently. Hence, the version of the software available at the time of use may not be 

the same as that referred to here. Users are advised to consult the manual for the respective 

version of the software being used. Regardless of the version of the software used, the 

reporting structure should remain the same. 

 

Example 1: Continuous data. 

This example was run using PROAST software. Note that if using the BMDS software, some 

of the default settings need to be modified to those recommended in this document (see 

appendix).  

                                                 
14 Note that, when the individual data were used in the original analysis, slightly different results may be obtained using the 

summary data in the analysis. 
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This example relates to a 2-year study with deoxynivalenol in mice. A dose-related decrease 

of body weight was observed. This endpoint is assumed to be the critical effect. The BMD 

analysis given below may serve as an example of how to report the results from a BMD 

analysis of a continuous dataset in an EFSA opinion.  

 

A. The data 

dose 
body weight, 

group mean 
SD n Sex 

0 43.85 2.69 37 M 

0.1 43.51 2.86 35 M 

0.5 40.04 3.00 43 M 

1.1 35.09 2.56 42 M 

 

B. BMR: Default value (percent change = 5%) 

C. Software used: PROAST version 17.3 

D. Additional assumptions: None 

E. Tables of BMD results 

Body weight (males) 

Model N° of parameters 

(variance excluded) 

Log-likelihood BMD05* 

(mg/kg) 

BMDL05* 

(mg/kg) 

  Exponential Hill Exponential Hill Exponential Hill 

M1 (no response) 1 119.03     

  --  M2** 2 197.91 197.43 0.25 0.22 0.23 0.20 

         -- M3 3       

         -- M4 3   

                -- M5 4   

Full model 7 198.34 

* At BMR of 5%.  

** Optimal model within this family according to log-likelihood criterion. It also passes the goodness-of-fit test, as the full 

model does not result in a significantly better fit. Consequently, there was no need to fit the higher models. M3, M4 and M5 
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F. Figures 

 

Figure 9: Fitted curves for M2 from the exponential model family (black) and for M2 

from the Hill model family (red).  

On these figures the doses have been plotted on a log-scale for better readability; the controls have been plotted at an 

arbitrary low dose. 

 

G. Conclusion 

For both the exponential and the Hill family of models, model 2 was selected. The associated 

BMDL05 values were 0.23 and 0.20 mg/kg. The BMDL05 for this study is 0.20 mg/kg.  

 

Example 2: quantal data 

This example relates to a 2-year study in rats, where three doses of a compound were 

administered to the animals. Dose-related changes in thyroid epithelial cell vacuolization were 

found, and these data were used here for a BMD analysis.  
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A. The data 

Dose 

(mg/kg bw/day) 

N° of animals showing 

thyroid epithelial 

vacuolization 

N° of animals in dose 

group 

sex 

0 6 50 f 

3 6 50 f 

12 34 50 f 

30 42 50 f 

 

B. BMR:   Default value (extra risk = 0.10) 

C. Software used:  BMDS version 2.0. 

D. Additional assumptions:  None 

E. Tables of BMD results 

Model used N° of 

parameter

s 

log-

likelihood 

accepted BMD10 BMDL10 

 Null model 1 -137.19    

 Gamma 3 -93.49 no   

 Logistic 2 -97.23 no   

 Log-logistic  2 -91.91 yes * 3.23 1.90 

 Log-probit 3 -91.86 yes * 3.31 2.34 

 LMS: one-stage
1)

 2 -94.10 no   

 LMS: two-stage 3 -94.10 no   

 Probit 2 -97.54 no   

 Weibull 3 -93.77 no   

 full model 4 -90.02    

* not significantly worse than full model (and significantly better than null model) 

1) The one-stage model is identical to the quantal linear model as implemented in BMDS; note that in BMDS, this model is 

called “multistage” and the number of stages has to be defined by setting the degree of the polynomial in this model, e.g. 2 

for a two-stage model. 



 Use of the benchmark dose approach in risk assessment 

 

 

The EFSA Journal (2009) 1150, 42-72 

 

 

F. Figures  

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

F
ra

c
ti
o

n
 A

ff
e

c
te

d

dose

Log-Logistic Model with 0.95 Confidence Level

16:15 02/14 2008

BMDL BMD

   

Log-Logistic

 

Figure 10: Plot of log-logistic model fitted to the data. The log-probit model resulted in a 

similar plot.  

 

G. Conclusion 

Two of the models were accepted, with an associated BMDL10 range of 1.9 to 2.3 mg/kg bw. 

The BMDL10 for this study is: 1.9 mg/kg bw.  

 

 

CONCLUSIONS AND RECOMMENDATIONS 

The Scientific Committee concludes that the BMD approach is a scientifically more advanced 

method compared with the NOAEL approach for deriving a Reference Point, since it makes 

extended use of dose-response data and it provides a quantification of the uncertainty and 

variability in the dose-response data. Using the BMD approach results in a more consistent 

RP, as a consequence of the specified BMR.  

Whilst software is currently available for BMD analysis, the Scientific Committee notes that 

this is evolving and significant developments are anticipated in the medium term, e.g. model 

averaging, analysis of continuous data.  

The Scientific Committee also considers that when toxicity test guidelines, e.g. OECD 

guidelines, are revised, specific aspects of the BMD approach are taken into account. 

Health-based guidance values derived using the BMD approach can be expected to be as 

protective as those derived from the NOAEL approach, i.e. on average over a large number of 

risk assessments. Therefore the default values for uncertainty factors currently applied are 

equally applicable.  
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The Scientific Committee does not consider it necessary to repeat all previous evaluations 

using the NOAEL approach by the BMD approach, because, on average, the two approaches 

give comparable results. Where refinement of previous risk assessments is considered 

necessary, application of the BMD approach would be of particular value. 

The BMD approach is applicable to all chemicals in food, independently of their category or 

origin, e.g. pesticides, additives or contaminants. Examples where the BMD approach adds 

particular value include situations where the identification of a NOAEL is uncertain, where a 

Reference Point is needed for the Margin of Exposure calculation for substances that are 

genotoxic and carcinogenic, and for dose response assessment of epidemiological data. In the 

short term, the Scientific Panels and EFSA Units are strongly encouraged to adopt the BMD 

approach for situations such as those described above.  

In the longer term, the Scientific Committee anticipates that the BMD approach will be used 

as the method of choice for the determination of the Reference Points for deriving health-

based guidance values and margins of exposure. To that end, recognising that there are 

practical considerations regarding its introduction and wider use in EFSA, and recognising 

that its application requires a level of expert judgement and modelling expertise, the Scientific 

Committee proposes that training in dose-response modelling and the use of the software be 

offered to experts in the scientific Panels and EFSA Units. The Scientific Committee would 

then like to review the implementation, experience and acceptability of the BMD approach in 

EFSA‟s work in two years time. 
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APPENDIX: SOFTWARE FOR BMD ANALYSIS  

[The appendix consisting of practical guidance on how to use available software, the 

Scientific Committee only took note of this section of the document, which was therefore not 

subject to formal adoption.] 
 

Dose-response analysis and modelling can be performed in many statistical software 

packages. However, for the non-expert, it is recommended that software that has been 

specifically developed for the purpose of BMD analysis is used. Such software packages are 

up to date with the various aspects of the BMD concept, including the statistical methodology, 

suggested dose-response models, and procedures for the calculation of the BMD and BMDL. 

Also, the terminology in the field is reflected in these software packages. The most well 

known BMD software is the benchmark dose software (BMDS) developed by the U.S. EPA 

(www.epa.gov/ncea), and the PROAST software developed by RIVM (www.rivm.nl/proast).  

The output results generated by the BMDS and PROAST software will be illustrated and 

discussed in the sections 1 and 2 of this appendix respectively. In principle, the two software 

programs should provide the same outcome when applied to the same data set provided that 

the same dose-response model and other assumptions/settings are used. Negligible differences 

may potentially result due to differences in the numerical algorithms employed. The BMDS 

and PROAST software are both applicable to quantal as well as continuous dose-response 

data, but they differ in a number of aspects, e.g. in terms of the user interface, and to some 

extent regarding the models and procedures available. The BMDS and PROAST software will 

be discussed in sections 1 and 2 below. In section 3, the major differences between the two 

software packages are summarized.  

 

1 The benchmark dose software, BMDS 

The BMDS is easily accessible. It can be downloaded free of charge from the U.S. EPA‟s 

website. It is a Windows-based package. Version 2.0 of the BMDS is considered in the 

discussion below. The user interface of BMDS 2.0 differs from older versions and more 

advanced features are included in BMDS 2.0. However, the basic elements generated by 

BMDS 2.0 (the type of plots and numerical output) discussed in sections 1.3 and 1.4 are 

identical to those in older versions of the software. It should be pointed out, however, that 

future versions of the BMDS may potentially differ somewhat from the illustrations provided 

below, which are based on version 2.0.  

In section 1.1, the different dose-response models in the BMDS are described, and in section 

1.2 the different definitions available for the BMR are presented. In sections 1.3 and 1.4, the 

output results generated by the BMDS 2.0 are illustrated and discussed for quantal and 

continuous data, respectively. The case where a specific model is fitted to an individual data 

set is considered. More advanced options also exist in the BMDS; e.g. several models may be 

fitted at the same time to the same data set. These advanced features are illustrated in section 

1.5. Together with the illustrations in sections 1.3, 1.4, and 1.5, guidance on how to operate 

the BMDS is also given. For more detailed information on how the software is operated the 

help manual of the BMDS can be consulted. 
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1.1 Dose-response models in the BMDS (version 2.0) 

Several different models are available in the BMDS for both continuous and quantal (referred 

to as Dichotomous in the software) data. The different models that are available under each 

category are summarized in Table 1 below. 

Table A1. The different dose-response model available in the BMDS. 

Continuous 

 

Quantal 

(Dichotomous) 

Dichotomous_Alternative
1)

 Dichotomous_Nested
1)

 

Hill  Gamma 

 

Gamma with background 

dose 

NLogistic 

Exponential Weibull 

 

Weibull with background 

dose 

NCTR 

Power2)  Quantal linear2) 

 

Multistage with background 

dose 

Rai and Van Ryzin 

Linear2) Multistage4) Multistage-cancer with 

background dose 

 

Polynomial2) Multistage-cancer3) log-Probit with background 

dose 

 

 log-Probit Probit with background 

response 

 

 log-Logistic  

 

Logistic with background 

response 

 

 Probit Dichotomous-Hill  

 Logistic   
1) These models are not discussed in the opinion 

2) Not recommended in this opinion 

3) Same as Multistage model but includes a slope factor for linear extrapolation 

4) Called LMS in the opinion 

 

Continuous models 

For continuous data, five types of models are available. The Hill and Exponential models are 

sigmoidal and can produce s-shaped dose-response curves. They are recommended in this 

opinion. The Exponential model in BMDS is the family of exponential models 2, 3, 4, and 5 

that are also available in PROAST (see section 2). At the date of the writing of this report only 

a beta version of the exponential family models exists in the BMDS and no plotting feature 

has been added for these models yet. Some restrictions can be made with respect to the 

continuous models: 

-With the Hill model, there is an option to restrict the slope parameter, η ≥ 1. This option is usually 

activated. 

-With the Exponential model, there is an option to restrict “power” to ≥ 1. This option is similar to 

that for the Hill model, and this option is usually activated. 
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For continuous data a variance model needs to be selected in addition to the model for the 

mean response. In the BMDS, the choice between a constant and a non-constant variance 

model can be made. The non-constant model corresponds to a power function of the mean 

response. Thus, the variance depends on the mean response for which a model should also be 

specified (e.g. the Hill model), and it has two additional parameters. The mean response and 

the variances are estimated together. 

-If the option “rho = 0” is activated in the software the constant model will be selected and if this 

option is not activated the non-constant model will be used.  

 

Quantal models 

For quantal data several dose-response models are available. There are nine “traditional” 

quantal models (Dichotomous), eight alternative models (Dichotomous_Alterative), and three 

models for studies which include data relating to litter (Dichotomous_Nested). The default 

pool of models recommended in this opinion is the Weibull, gamma, multistage, log-logistic, 

logistic, log-probit, and probit models. The Weibull, gamma, log-logistic, and log-probit 

models have three parameters, including a parameter that explicitly describes the background 

response. Certain restrictions can be made for this group of models: 

-With the Weibull and gamma models there is an option to restrict “power” to ≥ 1. This option is 

usually activated. 

-With log-logistic and log-probit models there is an option to restrict “slope” to ≥ 1. This option is 

similar to that for the Weibull and gamma models, and is activated by default. However for the log-

probit model, the slope should not be restricted.  

The multistage models also have a parameter which describes the background response. The 

total number of parameters in these models depends on the degree of the polynomial in the 

exponential terms of the models. This degree needs to be specified by the user. Certain 

restrictions can be made for these models: 

-With the Multistage models there is an option to restrict “Betas” to ≥ 0. This option should be 

activated, as it prevents the curve from being non-monotonic. 

The Probit and Logistic models have two parameters. In contrast to the other models they do 

not include a parameter that explicitly describes the background response. 

 

1.2 Benchmark response (BMR) definitions in the BMDS 

For quantal data, two types of BMR definitions are available; additional and extra risk. This 

opinion recommends an extra risk of 10 % as the default BMR for quantal data. An extra risk 

of 10 % is also the default BMR in the BMDS software. 
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For continuous data several BMR definition are available in the BMDS, which are 

summarized below: 

Std. Dev:  This implies a change in response relative to the estimated standard deviation in 

the control group. Std Dev = 1 is the default BMR in the BMDS software for 

continuous data. 

Rel. Dev:  This implies a % change in response relative to the estimated mean response in 

the control group. In this opinion, Rel Dev = 0.05 is recommended as the default 

for continuous data. 

Abs. Dev:  This implies an absolute change in response from the estimated mean response 

in the control group 

Point:  This implies that the continuous response value corresponding to the BMD (and 

BMDL) is directly specified. 

Extra:  This implies a percent change in response from the estimated difference between 

the maximum and minimum response value. This option is only available for the 

Hill and Exponential models which are sigmoidal and approach some limiting 

response value as the dose approaches infinity. This BMR definition is 

effectively similar to the extra risk definition for quantal data. 

 

1.3 The BMDS and quantal data 

The following section discusses and illustrates the BMDS for quantal data. First, a short guide 

is provided on how to proceed when using the BMDS 2.0 in the case of analysing a quantal 

data set with a particular dose-response model: 

1. After starting the BMDS software, go to File-New Dataset and select the type of data to be used: 

Select “Dichotomous” (i.e. quantal data) and the model that should be fitted (i.e. gamma, logistic, log-

logistic, probit, log-probit, Weibull, or multistage). Insert the data column-wise; the doses, the number 

of animals per group, and the incidence, or % positive, in each group. 

2. Save the data under File-Save Dataset As 

3. Click proceed, a new screen appears: 

Under “Column Assignment”, indicate the column number (or column name), in the data set, 

containing the doses, the number of animals, and the incidences (or % positive), respectively.  

Under “Other Assignments”, activate the box for “BMD calculation”, and “BMDL Curve Calc.” if 

requested. The model specific restrictions discussed in section 1.1 can also be activated here (e.g. 

power ≥ 1). The suggested default values can be used for the Confidence Level (= 0.95), the BMR (= 

0.10), and the Risk Type (= Extra).   

4. Run the calculation 
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5. The BMDS will display a plot that shows the data and the fitted model graphically. The BMDS also 

presents a numerical output file in which the numerical values for the BMD, the BMDL, and details 

on statistics of the model fit can be found. 

6. For further details and advanced options see section 1.5 and the BMDS user manual 

In the example presented below the Weibull model has been fitted to a hypothetical quantal 

data set. In the analysis, the power term was restricted to ≥ 1, the BMR was specified to an 

extra risk of 0.1 (i.e. 10%), and the default confidence level of 0.95 was used for the BMDL 

calculation. The resulting BMDS plot is shown in Figure A1, and the numerical output is 

given in Table 2. In the numerical output, information is first given regarding the model 

selected, the data used as basis, and the iteration settings applied in the model fitting process. 

Further down in Table 2, statistical information of the model fit and performance is given, and 

the BMD results from the analysis are finally presented. The more important parts of the 

numerical output; i.e. Parameter Estimates, Analysis of Deviance Table, Goodness of Fit, and 

BMD computation, is discussed in detail below (Tables A3-A6). 
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Figure A1. Plot generated by the BMDS.  

The Weibull model has been fitted to a hypothetical quantal data set. The BMR has been set to an extra risk of 0.1. A one-

sided 0.95 (i.e. 95%) confidence level was used for the BMDL calculation. The Weibull model has 3 parameters: 

“background”, “slope”, and “power”.  
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Table A2. BMDS numerical output for quantal data. 

====================================================================  

      Weibull Model using Weibull Model (Version: 2.12;  Date: 05/16/2008)  

     Input Data File: C:\USEPA\BMDS2\Data\1Wei1-2T.o.(d)   

     Gnuplot Plotting File:  C:\USEPA\BMDS2\Data\1Wei1-2T.o.plt 

        Fri Nov 07 10:32:57 2008 

====================================================================  

 

 BMDS Model Run  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  

   The form of the probability function is:  

 

   P[response] = background + (1-background)*[1-EXP(-slope*dose^power)] 

 

 

   Dependent variable = EFFECT2 

   Independent variable = DOSE 

   Power parameter is restricted as power >=1 

 

   Total number of observations = 5 

   Total number of records with missing values = 0 

   Maximum number of iterations = 250 

   Relative Function Convergence has been set to: 1e-008 

   Parameter Convergence has been set to: 1e-008 

 

 

                  Default Initial (and Specified) Parameter Values   

                     Background =    0.0544554 

                          Slope = 4.35787e-007 

                          Power =      2.94054 

 

 

           Asymptotic Correlation Matrix of Parameter Estimates 

 

             Background        Slope        Power 

 

 Background            1        -0.48         0.47 

 

      Slope        -0.48            1           -1 

 

      Power         0.47           -1            1 

 

 

 

                              Parameter Estimates 

 

                                                         95.0% Wald Confidence Interval 

    Variable         Estimate        Std. Err.     Lower Conf. Limit   Upper Conf. Limit 

  Background        0.0527242         0.020575           0.0123979           0.0930504 

       Slope     5.51437e-007     9.89168e-007        -1.3873e-006        2.49017e-006 

       Power          2.89478         0.353106              2.2027             3.58685 

 

 

 

                        Analysis of Deviance Table 

 

       Model      Log(likelihood)  # Param's  Deviance  Test d.f.   P-value 

     Full model        -204.559         5 

   Fitted model        -204.656         3        0.1936      2          0.9077 

  Reduced model        -339.484         1       269.849      4         <.0001 

 

           AIC:         415.312 
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                                  Goodness of Fit  

                                                                 Scaled 

     Dose     Est._Prob.    Expected    Observed     Size       Residual 

  ------------------------------------------------------------------------ 

    0.0000     0.0527         5.272     5.000         100       -0.122 

   50.0000     0.0950         9.501    10.000         100        0.170 

  100.0000     0.3255        32.553    33.000         100        0.095 

  150.0000     0.6842        68.420    67.000         100       -0.305 

  200.0000     0.9243        92.425    93.000         100        0.217 

 

 Chi^2 = 0.19      d.f. = 2        P-value = 0.9078 

 

 

 

   Benchmark Dose Computation 

 

Specified effect =            0.1 

Risk Type        =      Extra risk  

Confidence level =           0.95 

             BMD =        66.7396 

            BMDL =        55.0227 

 

 

Table A3. Parameter Estimates. 

                                    Parameter Estimates 

                                                

                                  95.0% Wald Confidence Interval 

 Variable      Estimate      Std. Err.    Lower Conf. Limit   Upper Conf. Limit 

Background    0.0527242      0.020575         0.0123979           0.0930504 

  Slope      5.51437e-007   9.89168e-007    -1.3873e-006        2.49017e-006 

  Power        2.89478       0.353106          2.2027             3.58685 

 

In the Parameter Estimates section in the numerical output (Table A3), the parameter 

estimates associated with the fitted dose-response model are given. Standard errors (Std. Err.) 

and 95 % confidence intervals for the estimated parameter are also given. Table A3 should not 

be mixed up with the Default Initial (and Specified) Parameter Values given earlier in the 

numerical output (Table A2), which are the start values for the estimation process. The 

quantal models in the BMDS have in general 2 or 3 parameters that are given descriptive 

names in the numerical output; e.g. background, slope, and power (Table A3), and relate to 

the parameters in the “probability function” shown in Table A2.  

 

 

Table A4. Analysis of Deviance 

                          Analysis of Deviance Table 

   

       Model      Log(likelihood)  # Param's  Deviance  Test d.f.  P-value 

    Full model       -204.559         5 

  Fitted model       -204.656         3       0.1936      2       0.9077 

 Reduced model       -339.484         1       269.849     4       <.0001 

 

          AIC:         415.312 

 

In the Analysis of Deviance Table (Table A4), three log-likelihood values are given. The log-

likelihood can be seen as quantitative measure of how close the model is to the data points; 

the higher the log-likelihood (i.e. less negative in this example), the better the fit. The log-

likelihood values for three different “models” are shown here, which can appear somewhat 

confusing since only one model, the Weibull model (“Fitted” model), was specified by the 
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user. However, the “Full” and "Reduced” models are theoretical reference cases that are used 

for comparison. These different models are described below and illustrated in Figure A2: 

Full model: A theoretical model which fits the data points perfectly, also called the “saturated 

model”. It has one parameter for each dose group but it does not correspond to some mathematical 

equation, as the Weibull model. Rather it corresponds to the observations (in this case the observed 

incidences) and no statement is given of how this model looks between the data points. The log-

likelihood associated with this model denotes the maximum that can be obtained for the particular 

dataset studied; if the Weibull model fitted the data perfectly it would have had the same log-

likelihood. 

Reduced model: A theoretical model which has only one parameter; it just corresponds to a 

horizontal line, the average incidence. This is a model that describes a “no dose-response 

relationship”, and is also called the “null model” in the opinion. 

Fitted model: This is the user specified model, the Weibull model in this example. 

 

 

Figure A2. Illustration of the “Fitted model” (the user specified Weibull model); the 

“Full model” (a model that fits the data perfectly); and the “Reduced model” 

(Null model).  

The “Full” and “Reduced” models are theoretical reference cases. The “Full” and “Reduced” models do not appear in the 

BMDS plot, but have been added here for illustrative purposes. 
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According to a likelihood ratio test, the difference between the log-likelihoods associated with 

two models is used to formally investigate whether or not the models are significantly 

different, see table 4 in the opinion for the critical values (at P=0.05). Table A4 reports the 

deviance, which is twice the difference between the log-likelihoods from two models. The 

deviance is used for calculating the P-values as reported.  

The p-value for the Fitted vs. Full model is > 0.05 (p-value = 0.9077, Table A4); the Weibull model is 

accepted since it is not significantly different from the “Full model” (the data points). 

The p-value for the Reduced vs. Full model is ≤ 0.05 (p-value < 0.0001, Table A4); there appears to 

be a dose-response trend since the horizontal line is significantly different from the “Full model” (the 

data points). For the particular example considered, the conclusion of a dose-response trend can, of 

course, be drawn directly by just looking at the data (Figure A2). 

The Akaike‟s Information Criterion (AIC) is also given in the Analysis of Deviance Table 

(Table A4). The AIC is a model selection criterion that can be used to compare models that 

belong to different classes or families, but is not recommended in this opinion.  

 

Table A5. Goodness of Fit  

                            Goodness of Fit                              

                          

                                                                Scaled 

     Dose     Est._Prob.    Expected    Observed     Size       Residual 

  ------------------------------------------------------------------------ 

    0.0000     0.0527         5.272     5.000         100       -0.122 

   50.0000     0.0950         9.501    10.000         100        0.170 

  100.0000     0.3255        32.553    33.000         100        0.095 

  150.0000     0.6842        68.420    67.000         100       -0.305 

  200.0000     0.9243        92.425    93.000         100        0.217 

 

 Chi^2 = 0.19      d.f. = 2        P-value = 0.9078 

 

In Goodness of Fit (Table A5), the data set under evaluation is presented as well as more 

detailed information of the model fit at each dose level (Est._Prob.). Furthest to the right, the 

“Scaled Residuals” are given. The U.S. EPA suggests that a scaled residual should not be 

larger that 2 or smaller than -2 for any dose group, which is not supported in this opinion. An 

overall p-value is also given in Table A5 based on the “Chi-square” statistic which is obtained 

by squaring the scaled residuals and adding them together. The Chi-square and its 

corresponding p-value (which is derived from a χ
2
 distribution for the appropriate d.f.) should 

be interpreted similar to the Deviance and its corresponding p-value for the Full vs. Fitted 

model (in Table A4). Both values represent a measure of the overall fit. However, they will 

slightly differ because the test statistic is calculated differently; the equation for the Deviance 

is different from that for the Chi-square. This opinion recommends using the p-value based on 

the likelihood ratio test (0.9077 as shown in Table 4).  
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Table A6. Benchmark dose computation 

Benchmark Dose Computation 

 

Specified effect =            0.1 

 

Risk Type        =      Extra risk  

 

Confidence level =           0.95 

 

             BMD =        66.7396 

 

            BMDL =        55.0227 

 

Finally, in Table A6 the selected value of the BMR (0.1, i.e. 10%), BMR type (extra risk), and 

confidence level (0.95) are given together with the resulting BMD and its lower bound, 

BMDL. In quoting these values, only two significant figures should be quoted, i.e. BMDL = 

55. 

 

1.4 The BMDS and continuous data 

The following section discusses and illustrates the BMDS for continuous data. First, a short 

guide is provided on how to proceed when using the BMDS 2.0, in the case of analysing an 

individual continuous data set with a certain dose-response model: 

1. After starting the BMDS software, go to File-New Dataset and select the type of data to be used: 

Select “Continuous” and the model that should be fitted (i.e. Hill, polynomial, linear, exponential, 

power). Insert the data column-wise; the doses, the no. of animals per group, and the standard 

deviation and the mean response in each group. Alternatively, individual data can be entered; the 

doses and responses for all individual subjects. 

2. Save the data under File-Save Dataset As 

3. Click proceed, a new screen appears: 

Under “Column Assignment”, indicate the column number (or column name), in the data set, 

containing the doses, the number of animals, the standard deviations, and the mean responses, 

respectively.  

Under “Other Assignments”, activate the box “BMD calculation”, and “BMDL Curve Calc.” if 

requested. The model specific restrictions discussed in section 1.1 can also be activated here (e.g. η ≥ 

1). If “rho” = 0 is activated, a constant variance models is selected (see section 1.1). The default 

values suggested in the opinion should be used: Confidence Level (= 0.95), BMR (= 0.05), and Risk 

Type (= Rel. Dev.).   

4. Run the calculation 
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5. The BMDS will display a plot that graphically shows the data and the fitted model. The BMDS also 

present a numerical output file in which the numerical values for the BMD, the BMDL, and details on 

statistics of the model fit can be found. 

6. For further details and advanced options see section 1.5 and the BMDS user manual 

In the example presented below the Hill model has been fitted to a hypothetical continuous 

data set. In the analysis, the slope parameter η was restricted to ≥ 1, and a constant variance 

model was selected, “rho = 0”. The BMR was specified to 5% change in response compared 

with the estimated mean response in the control group (Rel. Dev = 0.05), and the default 

confidence level of 0.95 was used for the BMDL calculation. The version used in this 

example does not allow a log-normal transformation of the response data and assumes a 

normal distribution. The resulting BMDS plot is shown in Figure A3, and the numerical 

output is given in Table A7. In the numerical output, information is first given regarding the 

model selected, the data used in the modelling as basis, and the iteration settings applied in the 

model fitting process. Further down in Table A7, statistical information of the model fit and 

performance is given, and the BMD results from the analysis are finally presented at the end. 

The more important parts of numerical output; i.e. Parameter Estimates, Table of Data and 

Estimated Values of Interest, Likelihoods of Interest, Tests of Interest, and BMD computation 

will be discussed in detail below (Tables A8-A12). 

 

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60

M
e

a
n

 R
e

sp
o

n
se

dose

Hill Model with 0.95 Confidence Level

10:36 09/19 2008

BMDBMDL

   

Hill

 

Figure A3. Plot generated by the BMDS.  

The Hill model has been fitted to a hypothetical continuous data set. The BMR has been set in the options to a 5 %, i.e. =0.05 

change in response relative to the estimated mean response in the control group. A 95% confidence level was used for the 

BMDL calculation. The Hill model has 4 parameters; “intercept”, “v”, “k” and “n”. 



 Appendix – Software for BMD analysis 

 

 

The EFSA Journal (2009) 1150, 58-72 

 

Table A7. BMDS numerical output for continuous data. 

====================================================================  

      Hill Model. (Version: 2.14;  Date: 06/26/2008)  

     Input Data File: C:\USEPA\BMDS2\Data\8HilT.dS1..(d)   

     Gnuplot Plotting File:  C:\USEPA\BMDS2\Data\8HilT.dS1..plt 

        Fri Nov 07 10:37:33 2008 

 ====================================================================  

 BMDS Model Run  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  

   The form of the response function is:  

 

   Y[dose] = intercept + v*dose^n/(k^n + dose^n) 

 

   Dependent variable = Mean 

   Independent variable = DOSE 

   rho is set to 0 

   Power parameter restricted to be greater than 1 

   A constant variance model is fit 

 

   Total number of dose groups = 5 

   Total number of records with missing values = 0 

   Maximum number of iterations = 250 

   Relative Function Convergence has been set to: 1e-008 

   Parameter Convergence has been set to: 1e-008 

 

                  Default Initial Parameter Values   

                          alpha =      55.1951 

                            rho =            0   Specified 

                      intercept =           51 

                              v =          -39 

                              n =      4.58229 

                              k =      29.3103 

 

           Asymptotic Correlation Matrix of Parameter Estimates 

 

           ( *** The model parameter(s)  -rho    

                 have been estimated at a boundary point, or have been specified by the user, 

                 and do not appear in the correlation matrix ) 

 

                  alpha    intercept            v            n            k 

 

     alpha            1       1e-008    -1.1e-007    -1.1e-007     1.3e-007 

 

 intercept       1e-008            1        -0.52        -0.34         -0.3 

 

         v    -1.1e-007        -0.52            1         0.72        -0.44 

 

         n    -1.1e-007        -0.34         0.72            1        -0.36 

 

         k     1.3e-007         -0.3        -0.44        -0.36            1 

 
 

                                 Parameter Estimates 

 

                                                         95.0% Wald Confidence Interval 

       Variable         Estimate        Std. Err.     Lower Conf. Limit   Upper Conf. Limit 

          alpha          50.0614          10.4385             29.6023             70.5206 

      intercept          49.6614          1.66787             46.3924             52.9303 

              v         -38.2158          3.63855            -45.3472            -31.0843 

              n          5.69111          1.66023             2.43711              8.9451 

              k          28.2041          2.95884             22.4048             34.0033 
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     Table of Data and Estimated Values of Interest 

 

 Dose       N    Obs Mean     Est Mean   Obs Std Dev  Est Std Dev   Scaled Res. 

------     ---   --------     --------   -----------  -----------   ---------- 

    0    10         51         49.7            8         7.08          0.598 

   10     9         48         49.6            6         7.08          -0.66 

   20    10         45         44.9            8         7.08         0.0325 

   40     9         16           16            9         7.08          -0.02 

   60     8         12           12            5         7.08         0.0163 

 Model Descriptions for likelihoods calculated 

 

 

 Model A1:        Yij = Mu(i) + e(ij) 

           Var{e(ij)} = Sigma^2 

 

 Model A2:        Yij = Mu(i) + e(ij) 

           Var{e(ij)} = Sigma(i)^2 

 

 Model A3:        Yij = Mu(i) + e(ij) 

           Var{e(ij)} = Sigma^2 

     Model A3 uses any fixed variance parameters that 

     were specified by the user 

 

 Model  R:         Yi = Mu + e(i) 

            Var{e(i)} = Sigma^2 

 

 

                       Likelihoods of Interest 

 

            Model      Log(likelihood)   # Param's      AIC 

             A1         -112.603521            6     237.207041 

             A2         -110.717413           10     241.434825 

             A3         -112.603521            6     237.207041 

         fitted         -113.004768            5     236.009537 

              R         -155.818533            2     315.637067 

 

 

                   Explanation of Tests   

 

 Test 1:  Do responses and/or variances differ among Dose levels?  

          (A2 vs. R) 

 Test 2:  Are Variances Homogeneous? (A1 vs A2) 

 Test 3:  Are variances adequately modeled? (A2 vs. A3) 

 Test 4:  Does the Model for the Mean Fit? (A3 vs. fitted) 

 (Note:  When rho=0 the results of Test 3 and Test 2 will be the same.) 

 

                     Tests of Interest     

 

   Test    -2*log(Likelihood Ratio)  Test df        p-value     

   Test 1              90.2022          8          <.0001 

   Test 2              3.77222          4          0.4377 

   Test 3              3.77222          4          0.4377 

   Test 4             0.802495          1          0.3703 

 

The p-value for Test 1 is less than .05.  There appears to be a 

difference between response and/or variances among the dose levels 

It seems appropriate to model the data 

 

The p-value for Test 2 is greater than .1.  A homogeneous variance  

model appears to be appropriate here 

 

The p-value for Test 3 is greater than .1.  The modeled variance appears  

 to be appropriate here 

 

The p-value for Test 4 is greater than .1.  The model chosen seems  

to adequately describe the data 

  

 

        Benchmark Dose Computation 

 

Specified effect =          0.05 

Risk Type        =     Relative risk  

Confidence level =           0.95 

            BMD =        17.6532 

            BMDL =        13.4352 
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Table A8. Parameter Estimates 

                             Parameter Estimates 

 

                                                 95.0% Wald Confidence Interval 

Variable       Estimate        Std. Err.     Lower Conf. Limit   Upper Conf. Limit 

 alpha         50.0614          10.4385           29.6023             70.5206 

intercept      49.6614          1.66787           46.3924             52.9303 

   v          -38.2158          3.63855          -45.3472            -31.0843 

   n           5.69111          1.66023           2.43711              8.9451 

   k           28.2041          2.95884           22.4048             34.0033 

 

In the Parameter Estimates section in the numerical output (Table A8), the parameter 

estimates associated with the fitted dose-response model are given. Standard errors (Std. Err.) 

and 95 % confidence intervals for the estimated parameter are also given. Table A8 should not 

be mixed up with the Default Initial Parameter Values given earlier in the numerical output 

(Table A7), which are the start values for the estimation process. Different types of continuous 

models (describing the mean response) are available in BMDS, which differ in the number of 

parameters. The Hill model, which is used in this example, has four parameters. In the case of 

continuous data not only a model for the mean response, but also a model for the variance 

needs to be selected. A constant or a non-constant variance model (a power function of the 

mean response) can be selected in the BMDS. In this example, a constant variance model was 

selected. The constant variance parameter is called “alpha” in Table A8, while the other 

parameters given (intercept, v, n, and k) are associated with the Hill model that describes the 

mean response. So in total, five parameters are here estimated (Table A8).  

 

Table A9. Table of Data and Estimated Values of Interest 

                 Table of Data and Estimated Values of Interest 

 

 Dose       N    Obs Mean     Est Mean   Obs Std Dev  Est Std Dev   Scaled Res. 

------     ---   --------     --------   -----------  -----------   ---------- 

 

    0      10       51         49.7            8         7.08          0.598 

   10       9       48         49.6            6         7.08          -0.66 

   20      10       45         44.9            8         7.08         0.0325 

   40       9       16           16            9         7.08          -0.02 

   60       8       12           12            5         7.08         0.0163 

 

In Table of Data and Estimated Values of Interest (Table A9) the data set under evaluation is 

presented, and also the estimates for the mean response and the standard deviation at each 

dose level (Est Mean, and Est Std Dev).  

 

Table A10. Likelihoods of Interest 

                      Likelihoods of Interest 

 

            Model      Log(likelihood)   # Param's      AIC 

             A1         -112.603521            6     237.207041 

             A2         -110.717413           10     241.434825 

             A3         -112.603521            6     237.207041 

         fitted         -113.004768            5     236.009537 

              R         -155.818533            2     315.637067 
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In Likelihoods of Interest (Table A10), a number of log-likelihoods are given. As previously 

mentioned the log-likelihood can be seen as quantitative measure of how close the model is to 

the data points. For continuous data, a more extensive comparison of log-likelihoods can be 

made since both a model for the mean and the variance is established. Several theoretical 

reference “models” (A1, A2, A3, and R) can thus be defined, which the fitted model for the 

mean (e.g. the Hill function) and/or the variance (constant or non-constant) can be compared 

to. The log-likelihoods for five different models (A1, A2, A3, fitted, and R) are calculated for 

continuous data (in the evaluation of a single data set). These different models, or cases, are 

described below: 

Model A1: Full model with a constant variance; it has one parameter for each dose group that 

describes the mean, and a single parameter that describes the variance. 

Model A2: Full model for both the mean and the variance; it has two parameters for each dose group, 

one for the mean and one for the variance. Model A2 fits the data perfectly.  

Model A3: Full model with a user specified model for the variance. A3 has one parameter for each 

dose group that describes the mean and one or two additional parameters for the variance. In the case 

constant variance is selected A3 becomes equivalent to A1. 

Fitted model: User specified model/s for the mean response and the variance. 

Model R: Null model that represents a “no dose-response relationship”; a horizontal line that 

corresponds to the average effect over all doses.  

 

Table A11. Test of Interest 

                  Tests of Interest 

     

   Test    -2*log(Likelihood Ratio)  Test df        p-value     

 

   Test 1              90.2022          8          <.0001 

   Test 2              3.77222          4          0.4377 

   Test 3              3.77222          4          0.4377 

   Test 4             0.802495          1          0.3703 

 

In Tests of Interest (Table A11), the log-likelihood values for the different models (A1, A2, 

A3, fitted, and R) are compared using likelihood ratio tests. Four different tests, Test 1-4, are 

considered: 

Test 1, R vs. A2:  tests if the response and/or variance differ between the dose levels. 

Test 2, A1 vs. A2:  tests if the variance is homogenous (constant)  

Test 3, A3 vs. A2:  tests if the selected constant variance model is appropriate. 

Test 4, Fitted vs. A3:  tests if the selected Hill model is appropriate for the mean response. 
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To understand better what is done here one should consider what is identical and what is 

different between the model pairs that are compared in each Test; the aspect that is different is 

what is “tested”. For example, Test 4 is between model A3 and the fitted model. These 

models are identical in the variance, but differ in the mean. It is, therefore, testing if the 

models for the mean differ between “A3” and “fitted” in statistical terms, and if it does not, 

the fitted model is accepted. The difference between two log-likelihoods for each test pair can 

be compared with the critical values in Table 4 of the opinion, using the difference in the 

number of parameters, as the number of Degrees of Freedom (DF).  

In Table A11 it is shown that Test 2 and Test 3 give the same p-value. This is because the 

constant variance model was selected. In this case, model A3 will be the same as model A1. If 

the non-constant variance model is chosen, the outcomes of Test 2 and 3 will differ. 

For Test 1, the BMDS uses a cut-off p ≤ 0.05. For Test 2-4, however, the BMDS uses a cut-

off p ≤ 0.10 (see Table A7). If the difference between log-likelihood‟s associated with two 

models is so small that it gives a p-value greater than these cut-off‟s, the BMDS considers the 

two models to be statistically similar. As mentioned in the section on quantal data, a cut-off p 

≤ 0.05 was used for all tests. This opinion recommends using a default cut-off p < 0.05 for 

rejecting a model resulting in a greater likelihood of accepting simpler models (see section 

5.4). 

 

Table A12. Benchmark dose computation 

   Benchmark Dose Computation 

 

Specified effect =          0.05 

 

Risk Type        =     Relative risk  

 

Confidence level =          0.95 

 

             BMD =       17.6532 

 

            BMDL =       13.4352 

 

Finally, in Table A12 the selected value of the BMR (0.05), BMR type (Rel. Dev.), and 

confidence level (0.95) are given together with the resulting BMD and its lower bound, 

BMDL. In quoting these values, only two significant figures should be used, i.e. BMDL = 13. 
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1.5 Advanced features of the BMDS 

The illustrations in the sections 1.3 and 1.4 above considered the case when a specific model 

is fitted to an individual data set. More advanced options in the BMDS allow the user to fit 

several models to a data set, or fitting a specific model to several data sets, or a combination 

of both. Below follows a brief guide on how this is carried out using BMDS. 

After BMDS 2.0 software has been opened, under “File” in the main window of the BMDS, 

the user selects “New Session”. A new window will then appear with a single row and a few 

columns. Under “Session Grid” in the main window, additional rows may be added to the 

session window. The number of rows added here should correspond to the number of models 

the user want to fit, and/or the number of data sets that is to be evaluated. In the example 

below (Figure A4, Table A13), seven models were fitted to the same quantal data set that was 

used in section 1.1. Thus, seven rows were added to the session window. For each row added 

to the session window, specifications need to be made with regard to each column “Model 

Type”, “Model Name”, “Data File”, “Run”, “Model Option File”, “Endpoint”, and “Out File”. 

The options under each column category are described below. 

Model Type: This is a drop down menu where the general type of model is selected (see section 1.1 

for the available options). In this example, “dichotomous” was selected for each row.  

Model Name: A specific model is here chosen from the pool of models that is available for the 

particular “Model Type” category selected (see section 1.1 for the available options). This is done by 

right clicking in this column (right click in the cell/s below “Model Name”). In this example, the 

Weibull, gamma, multistage, log-logistic, logistic, log-probit, and probit models were selected on each 

row, respectively. 

Data File: By right clicking in this column a number of choices regarding the data can be made. 

“New Data File” can e.g. be selected; a window will then appear into which the user should enter the 

dose-response data that is to be analysed. This window is identical to that discussed for the simpler 

analyses in sections 1.3 and 1.4. The data (doses, responses etc) should be entered column-wise: 

-In the case of quantal data, the doses, the number of subjects in each group, and the incidence (or 

fraction responding) in each group should be entered.  

-In the case of continuous data, the doses, the number of subjects in each group, the mean response in 

each group, and the standard deviation in each group should be entered. Alternatively, individual data 

(individual doses and responses) can be entered. 

The columns into which the data was entered may be renamed. This is done by right clicking on the 

column header. The option “Rename Column” can then be selected. For example, give the name 

“Dose” for the column into which the doses were entered. After data has been entered and columns 

named, the data window/file can be saved (in “.dax” format). 

Run: Activation of this box simply means that the data set on that particular row will be evaluated. 
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Model Option File: By right clicking in this column a number choices regarding model options can 

be made. “New Option File” can e.g. be selected; a window will then appear in which the user needs 

to make some specification:  

Column Assignments:  

It needs to be specified what each column in the previously added data file represents. 

Optimizer Assignments: 

The default iteration settings are here given. These values normally do not need to be changed by the 

user. 

Parameter Assignments: 

The default start values for the model fitting process, with regard to each parameter in the selected 

model, are here given. These values normally do not need to be changed by the user. 

Other Assignments:  

A number of options can be activated here depending on the model selected. Activation of the box 

“BMD calculation” simply means that the BMD and BMDL will be calculated. The model specific 

restrictions described in section 1.1 can also be activated here. The confidence level for the BMDL 

calculation should be specified and also the BMR, and the BMR Type (see section 1.2 for the 

available options). The user may also specify the adverse direction of the dose-response; “up”, or 

“down”, or leave this to the software; “automatic”. In this example, confidence level = 0.95, BMR = 

0.10, and BMR Type = extra, was selected on each row (for each model). After the different choices 

have been made this file can be saved (in “.opt” format).  

Endpoint: Nothing needs to be done here. The name given by the user for the column in the data 

window/file (that was added under “Data File”) where the incidences (quantal data) or mean 

responses (continuous data) were entered will be displayed here. 

Out File: By right clicking on this column “Set Out File To” can e.g. be selected which allows the 

specification of a file name for the output results (in “.out” format). The output results can also be 

copied and saved after it has been generated. 

After including all relevant information in the steps above, the session window can be saved 

(in “.ssn” format). The session is executed by pressing “Run” in the session window.  

The output from the example discussed (with the seven models fitted to the quantal data set 

that was also used in section 1.3) is illustrated in Figure A4 and Table A13. Figure A4 shows 

the seven models fitted to the data, and Table A13 gives a summary report of the numerical 

output. The information in Table A13 is similar to that discussed in section 1.3, but is given 

here in summary form with regard to each model. The complete numerical output can also be 

derived. This is done by right clicking in any cell of the particular column, i.e. model, of 

interest in the summary report, and select “Show Out/Graph”. A new window will then appear 

consisting of two parts: the plot for the particular model considered and a complete numerical 

output. The output for the model of interest is given in a format identical to that discussed in 

sections 1.3 and 1.4. 
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Figure A4. BMDS plot of the Weibull (A), 

Gamma (B), Multistage (C), log-

Logistic (D), Logistic (E), log-

Probit (F), and Probit (G) models 

fitted to a quantal data set. 
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Table A13. BMDS Summary report of numerical output from seven quantal dose-

response models. 

Model Name Weibull Gamma Multistage LogLogistic LogProbit Logistic Probit 

Data File Name 1-23-

Dicho.dax 

1-23-

Dicho.dax 

1-23-

Dicho.dax 

1-23-

Dicho.dax 

1-23-

Dicho.dax 

1-23-

Dicho.dax 

1-23-Dicho.dax 

Option File Name T.opt T.opt T.opt T.opt T.opt T.opt T.opt 

The parameter betas   are restricted 

to be positive 

    

Dependent variable EFFECT2 EFFECT2 EFFECT2 EFFECT2 EFFECT2 EFFECT2 EFFECT2 

Independent variable DOSE DOSE DOSE DOSE DOSE DOSE DOSE 

Maximum number of 

iterations 

250 250 250 250 250 250 250 

Relative Function 

Convergence has been 

set to 

1e-008 1e-008 1e-008 1e-008 1e-008 1e-008 1e-008 

Parameter 

Convergence has been 

set to 

1e-008 1e-008 1e-008 1e-008 1e-008 1e-008 1e-008 

Total number of Dose 

Groups with missing 

values 

0 0 0 0 0 0 0 

Slope parameter    is restricted 

as slope >= 1 

is restricted 

as slope >= 1 

is not 

restricted 

is not restricted 

Total number of 

observations 

5 5 5 5 5 5 5 

Total number of 

parameters in model 

  4     

Total number of 

specified parameters 

  0     

Degree of polynomial   3     

Initial/Specified 

Background 

0.0544554 0.0544554 0.0542477     

Initial/Specified Slope 4.35787e-

007 

0.0695017  3.75823 2.13839 0.0272189 0.0158216 

Initial/Specified Power parameter is 

restricted as 

power >=1 

parameter is 

restricted as 

power >=1 

     

Initial/Specified 

Intercept 

   -17.8385 -10.1439 -3.21894 -1.87282 

Initial/Specified 

Beta(1) 

  0     

Initial/Specified 

Beta(2) 

  0     

Initial/Specified 

Beta(3) 

  3.23694e-

007 

    

Asymptotic 

Correlation Matrix of 

Parameter Estimates 

Array Array Array Array Array Array Array 

Parameter Estimates Array Array Array Array Array Array Array 

Analysis of Deviance 

Table 

Array Array Array Array Array Array Array 

AIC 415.312 416.885 415.227 418.198 418.094 415.73 417.468 

Goodness of Fit Array Array Array Array Array Array Array 

Chi-square 0.19 1.75 0.11 3.00 2.93 2.82 4.97 

DF 2 2 2 2 2 3 3 

P-value 0.9078 0.4167 0.9477 0.2232 0.2314 0.4197 0.1737 

Specified effect 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Risk Type Extra risk Extra risk Extra risk Extra risk Extra risk Extra risk Extra risk 

Confidence Level 0.95 0.95 0.95 0.95 0.95 0.95 0.95 

BMD 66.7396 73.7378 65.0092 76.6894 78.9806 54.9049 49.8127 

BMDL 55.0227 59.7761 48.3869 63.8925 65.5908 47.8345 43.3441 

BMDU   72.3484     

Note: For the Multistage model the BMDS also computes the upper bound BMDU; a two-sided 90% confidence interval is here given for 

the BMD. 
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2 The PROAST software 

PROAST can be downloaded from the RIVM website (www.rivm.nl/proast). Full details for 

installation and a step-by-step guide to its use are provided in the documentation that comes 

with the software. 

PROAST is written in the S language, and it is, therefore, necessary to have one of the 

software package Splus or R available: PROAST is a module that is added to either the Splus 

or the R software. A license needs to be purchased for Splus, while the R software can be 

downloaded free of charge from the R-website www.cran.r-project.org. An advantage of Splus 

is that it provides better graphical output. However, the following illustration will use the R 

software as a basis, because this software is more easily accessible. 

The R version of PROAST is designed in terms of a set of multiple choice questions that 

guide the user through the different options available. For example, different options are given 

for what type of data the user wants to analyze, e.g. continuous or quantal data? Does the user 

want to fit a specific model function, or a family of nested models? And what BMR should be 

selected? In a similar manner, PROAST also needs to gather details regarding the data; e.g. 

what parts in the data matrix represent the “dose” and the selected “response”? The option to 

include covariates exists, e.g. does the user want the analysis to be stratified over two sub-

groups (e.g. males and females)? Different options are given on how to plot the data and the 

fitted model including an option for the scales used. 

An analysis of a continuous dataset by PROAST is illustrated below. In this analysis the 

exponential family of models was specified with a BMR of 5%. A numerical output of the 

analysis is generated (Table A14) together with three plots (Figures A5, A6, and A7). 

In Table A14, the resulting log-likelihood for each model in the exponential family (models 

m11, m1, m2, m3, m4, and m5) is given. As previously pointed out, the log-likelihood is a 

quantitative measure of how well the respective model fits the data. The number of parameters 

(npar) for each model is indicated, and information is given about the model fitting process 

(converged); if the value in this column reads “1” it means that the model fitting process was 

successful, i.e. convergence was achieved; not necessarily that a good model was achieved. 

http://www.cran.r-project.org/
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Table A14. Numerical output generated in PROAST. 

------------------ relKidney ------------------ 

 

ATTENTION: There are 1 missing values 

 

No observations below detection limit 

 

 

ANALYSIS WITH EXPONENTIAL MODELS 

 

model     converged        npar     loglik 

m11-      1         8        59.07  

m1-        1         2        32.3  

m2-        1         3        49.37  

m3-        1         4        49.37  

m4-        1         4        56.72  

m5-        1         5        58.02  

re-fitting selected model m4- 

m4-       1         4        56.72  

 

calculating C.I....... 

 

the CED (in orig. units) and the 90 % confidence interval for group 1 is:  

47.102  

30.57046  

76.4217 

 

The number of parameters in this output includes the variance parameter. 

 

Model m11, the full model fits the data points perfectly. The number of parameters for model 

m11 is 8, which equals the number of dose groups (7), including control, plus one parameter 

for the variance.  

Model m1, the null model represents a “no dose-response relationship”; a horizontal line that 

corresponds to the average effect over all doses.  

Models m2, m3, m4, and m5 represent the user-specified models, i.e. the nested models of 

the exponential family (see Table 3 of the opinion). 
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Figure A5 shows a graphical comparison of all the fitted models.  
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Figure A5.  Graphical comparison of the exponential models fitted by PROAST.  

The circles represent the observed means at different doses. The x-axis reflects doses; the y-axis the response. For the 

equations of the models, see Table 3 

 

 

When a family of models is selected by the user to be fitted, PROAST operates so that it 

determines the most appropriate model for the particular data considered. This is done by pair-

wise comparison of the models using likelihood ratio tests, on the significance level p ≤ 0.05.  

In the example, m4 is determined to be the most appropriate model. The selected model is 

shown labelled “re-fitting selected model” together with the BMD (47) which is called 

Critical Effect Dose (CED) in the numerical output and its two-sided 90% confidence interval. 

The lower bound of the interval, the BMDL, is 31.  
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Figure A6 shows a detailed plot of the data and the selected model (m4).  
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Figure A6. Plot of the data and the selected model (m4) in PROAST. The specified BMR, 

the BMD, and the BMDL are shown.  
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Figure A7 shows the log-likelihood profile computed by PROAST. The value of the BMD 

(47, which is 1.67 on log-scale) corresponds to the maximum of the log-likelihood. The upper 

and lower 95% confidence bounds for the BMD are the doses where the profile curve 

intersects with the horizontal line in Figure A7; this line corresponds to a log-likelihood (on 

the y-axis) which is on the border of being significantly different from the maximum log-

likelihood at the significance level p ≤ 0.10, given the particular model (m4 with constant 

variance) and data considered. This is equivalent to a two-sided 90% confidence interval. 
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Figure A7. Plot generated by PROAST of the log-likelihood profile. 

 

PROAST also offers a number of additional options, e.g. use of covariates, which are not 

described here. Those interested are referred to the PROAST documentation.   

 

 

3 Summary of differences between the BMDS and PROAST 

A comparison of the BMDS and PROAST software is provided in Table A15. 

For continuous data, the default assumptions regarding the distribution of the data differ 

between BMDS and PROAST. As a default, data are assumed to be normally distributed in 

BMDS while they are assumed to be log-normally distributed in PROAST. If this is the only 

difference (i.e. the same model, BMR, and other settings), this should result in only slight 

differences in the BMD and BMDL.  

The procedure in PROAST for fitting the family of exponential models and determining the 

most appropriate member using likelihood ratio tests is available in the BMDS, but at this 

point only a beta version of this approach has been released.  
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There are differences with respect to the Hill model family. In PROAST this family is defined 

as a nested family of models, analogous to the exponential family. In BMDS the Hill model is 

only available as the 4 parameter model within the Hill family of models. 

For continuous data, the variance can be either specified as constant or non-constant in 

BMDS, while PROAST always uses a constant coefficient of variation. A constant coefficient 

of variation is a special case of the non-constant variance model in BMDS, i.e. the case when 

the parameter “rho” equals 1. 

In BMDS, several ways of defining the BMR are available for continuous data, whereas, in 

PROAST, only the options called “Rel. Dev.” and “Std. Dev.” in BMDS, are available. 

For most models in BMDS, only the lower bound of the confidence interval is calculated, i.e. 

the BMDL, while both the lower and upper bound are computed by PROAST.  

For analysis of quantal data, BMDS and PROAST are essentially the same.  

 

Table A15. Comparison of BMDS and PROAST  

 BMDS PROAST 

Environment Can be run immediately 

(as an executable) under 

Windows 

Splus or R is required. 

R is free software 

First use Easy to get started Higher threshold; requires basic 

understanding of Splus or R 

User interaction Fully Windows-based Ordered process of answering 

multiple choice questions; 

Graphical User Interface available 

only for continuous data 

Continuous data Yes Yes 

Nested continuous data, 

e.g. for litter effects 

No Yes 

Quantal data Yes Yes 

Nested quantal data, e.g. 

for litter effects 

Yes  Yes 

Ordinal data No Yes 

Confidence interval by 

profile likelihood 

Yes Yes 

Confidence interval by 

bootstrapping 

No Yes 

Covariates No Yes 

Automatic model fitting 

for nested models 

Yes (beta version) Yes 

Graphical output Yes Yes 

 


