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SUMMARY 
  
The European Union (EU) Member States (MSs) collect data on zoonoses, zoonotic agents, 
antimicrobial resistance and food-borne outbreaks. The European Food Safety Authority 
(EFSA) is assigned the tasks of examining and analysing the data collected and preparing the 
Community Summary Report (CSR). 
 
Statistical analyses were carried out for the first time on the 2006 data. The objective was to 
evaluate the significance of temporal variations in the EU-level prevalence of zoonotic agents 
in animals and in the EU-level proportion of positive food units.  Indeed, trend analysis 
provides information on developments in the Community and Member States and it may give 
information on the effects of Community or national control measures to reduce the 
occurrence of zoonotic agents.  
 

 

                                                 
1 For citation purposes: Report of the Task Force on Zoonoses Data Collection on the statistical analysis of temporal and 

spatial trends of zoonotic agents in animals and food. Part I: critical review of the statistical analysis carried out on the 
Community Summary Report 2006 data. The EFSA Journal (2009) 253, 1-77. 
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A critical review of the statistical analysis of time trends in 2006 was carried out. Two critical 
characteristics of the data, which can affect the validity of the analysis, were identified: 
1) varying sampling probability of epidemiological units among MSs and across years in the 
same MS, corresponding to disproportionate stratified sampling, where MSs are considered as 
strata; 2) correlation among observations on zoonotic agents in the same MS in subsequent 
years. 
 
The SURVEYLOGISTIC procedure in the SAS system, which was used in the 2006 analysis, 
is specifically suited to analyse survey data taking into account sampling design. In order to 
account for disproportionate stratified sampling, weights were calculated, per MS and year, as 
the reciprocal of the sampling ratio (number of units in the MS population, divided by number 
of sampled units).  The choice of the population to be used to calculate weights is critical 
since weighting may strongly affect parameter estimates and statistical significance of trends.  
Moreover, finite population correction could be applied if considered as appropriate (design-
based approach). 
 
The CLUSTER statement was used to take into account correlation among observations from 
the same MS.  Consequently, the standard error for the parameter corresponding to the effect 
of year on the probability of a positive result is inflated and the probability of statistical 
significance reduced. In SURVEYLOGISTIC, the CLUSTER statement is specifically aimed 
to deal with a design aspect, namely the random selection of clusters.  Therefore, in the 
absence of a specific sampling design, other techniques, such as generalised estimating 
equations (GEE, REPEATED statement in the GENMOD procedure) would be more 
appropriate. However, from a practical point of view, the approach to the analysis of time 
trends used by EFSA was valid, and results are the same or very similar to those obtained by 
using GEE.  By using techniques for correlated data, the effects of between MS harmonisation 
problems were reduced, and the analysis was valid as long as harmonisation was constant 
within MSs, across years.  
 
Further developments of trend analysis are introduced. The Bayesian approach, for example, 
is a flexible and powerful set of tools in the analysis of time trends, where model parameters 
are not assumed to be a fixed unknown constant to be estimated, but instead they are seen as 
random variables.  The distribution of parameters (called posterior distribution) quantifies all 
uncertainty and information present in the model and the data, but also possibly from other 
prior sources of knowledge available (defining prior distribution of parameters).  
 
Investigating the spatial and temporal distribution of zoonotic agents and diseases, performing 
specific spatial and temporal analyses is a powerful approach in the study of temporal and 
spatial trends of zoonoses.  Therefore, spatial and space-time clustering analyses of zoonoses 
is an important field of further development carried out by EFSA.  A review of the most 
commonly used statistical methods in spatial epidemiology is included, together with data 
needs for meaningful spatial analysis at EU level. 
 
Results of complex statistical analysis and certain details on the methods need to be 
communicated to risk managers and the general public.  In a section of this report, basic 
principles on how to communicate in a comprehensible way are presented, and a worked-out 
example shown.  
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In a part II report the use of different software and statistical packages (including open 
source) will be compared in the analysis of temporal trends. Moreover, the analysis of spatial 
trends in zoonotic agents will be developed through a case study. 
 
 
Keywords: zoonoses, statistical analysis, trend analysis, spatial analysis, data analysis 
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BACKGROUND 
 
Directive 2003/99/EC on the monitoring of zoonoses and zoonotic agents lays down the 
Community procedure for the monitoring and collection of information on zoonoses, which 
obliges Member States (MSs) to collect relevant and, where applicable, comparable data of 
zoonoses, zoonotic agents, antimicrobial resistance and food-borne outbreaks.  The European 
Food Safety Authority (EFSA) is assigned the tasks of examining and analysing the data 
collected and preparing the Community Summary Report (CSR). 
 
Data collected in the framework of Directive 2003/99/EC relate to the occurrence of zoonotic 
agents isolated from animals, food, and feed, as well as to antimicrobial resistance in these 
agents. Information concerning zoonoses cases in humans and related antimicrobial resistance 
is derived from Communicable Disease Networks laid down by Council Decision 
No 2119/98/EC that are currently coordinated by the European Centre for Disease Prevention 
and Control (ECDC).  EFSA, in close collaboration with ECDC, has published three CSRs on 
Trends and Sources of Zoonoses, Zoonotic Agents, Antimicrobial Resistance and Food-borne 
Outbreaks in the European Union, the latest from data for 2007.  EFSA is assisted by the 
Zoonosis Collaboration Centre (ZCC) in the Danish Technical University in the drafting of 
the CSR. 
 
In the CSR, data submitted by MSs are summarised and presented in tables, graphs, and 
thematic maps.  Moreover, for the first time, statistical analyses were carried out on 2006 data 
to estimate the significance of temporal variations in the EU-level prevalence of zoonotic 
agents in animals and in the proportion of positive food units. 
 
Difficulty in comparing country data has been acknowledged in the annual zoonoses data 
collection.  In fact, in certain cases, sampling strategies and laboratory methods may be not 
fully harmonised.  However, it is reasonable to assume that, within countries, data are 
relatively comparable between reporting years (unless the monitoring systems have been 
changed considerably).  Further harmonisation of data received from MSs would improve the 
possibilities of analysing and interpreting information at Community level.  Moreover, 
detailed information on geographic locations of tested epidemiological units (animals, herds, 
food) and of underlying populations would allow the analysis of spatial trends. 
 
The following of trends, both at Community and MS specific levels, may provide information 
on the effects of Community or national control measures to reduce the occurrence of 
zoonotic agents.  Moreover, hypotheses can be generated on the effects of potential risk 
factors, either natural or associated with human activities.  Finally, the emergence or re-
emergence of pathogens can be detected by analysing trends. 
 
A valid statistical analysis is necessary to estimate epidemiological parameters and to obtain 
useful Community level information from the data provided by MSs.  Furthermore, testing 
statistical significance is necessary to draw conclusions on whether observed trends are due to 
chance alone or represent real changes in population.  Data peculiarities, associated with 
sampling design and correlation among epidemiological units, need to be taken into account 
in order to avoid misleading conclusions.  In addition, different statistical techniques, as well 
as software for statistical analysis can be considered, and results obtained by different 
approaches can be compared and discussed.  
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Each year, MSs report a substantial amount of data on zoonotic agents in a wide range of 
different animal species and food categories, according to the framework of the zoonoses 
Directive 2003/99/EC.  As data collection and management result from considerable efforts 
made by MSs and all involved institutions, further development in data analysis should be 
considered in order to make the best possible use of available data and of the existing data 
collection system.  Changes in surveillance and sampling systems, including the adoption of 
targeted and risk-based sampling, should also be considered for their effect on data 
harmonisation and in view of the application of appropriate statistical techniques. 
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TERMS OF REFERENCE 
 
Directive 2003/99/EC sets out the Community procedure for the monitoring and collection of 
information on zoonoses, which obliges Member States to collect relevant, and where 
applicable, comparable data on zoonoses, zoonotic agents, antimicrobial resistance and food-
borne outbreaks.  EFSA is assigned the tasks of examining the data collected and preparing 
the Community Summary Report.  
 
EFSA applies epidemiological and statistical methods in the examination of data and, in 
particular, seeks to analyse trends over subsequent years as well as geographical distributions.  
The statistical techniques that can be used to estimate changes in time and space in the 
frequency of zoonotic agents in animals and food should be carefully checked/evaluated in 
terms of their validity for available data and for specific objectives.  
 
Therefore, EFSA asked its Task Force on Zoonoses Data Collection to consider the statistical 
methods to be used in the analyses of the annual zoonoses data. 
 
The Task Force on Zoonoses Data Collection is asked to consider and issue reports on: 

• the validity of statistical methods that are currently used to analyse time and spatial 
trends of zoonotic agents in animals and food in the Community Summary Report; 

• the identification of the most appropriate statistical methods for analysing temporal 
trends taking into account that data collection is not fully harmonised for different 
zoonotic agents and that information from some Member States is unavailable; 

• the identification of the most appropriate statistical methods for analysing the 
geographical distribution of zoonotic agents taking into account the above-mentioned 
factors; 

• the perspectives for the harmonisation of data collection and the monitoring of zoonotic 
agents in MSs in view of improving data;  

• the improved communication of statistical analysis results. 

 

This report is the part I report that covers the critical review of the statistical analyses carried 
out, preliminary considerations of the further developments in trend and spatial analyses and 
communication of the methods and results from statistical analyses. The report part II will 
include a comparison of different software and statistical packages (including open source) in 
the analysis of temporal and spatial trends. Moreover, the analysis of spatial trends in 
zoonotic agents will be developed through a case study. 
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CONSIDERATION 
 
1. Current data collection system 
 
The information on zoonoses, zoonotic agents and antimicrobial resistance has to be 
submitted to the European Commission (EC) each year in accordance with Community 
legislation.  Since 2005, this has been done through a web-based reporting system, and 
information is then stored in a large database, hosted and maintained by EFSA. 
 
The web-based reporting system allows reporting officers in each MS to enter data 
concerning zoonotic agents in foodstuffs, animals and feedstuffs collected through a variety 
of different systems, i.e. official monitoring and control programmes, HACCP and own-check 
programmes, surveys and baseline studies.  Data are entered into the database using a number 
of pre-defined tables, pick-lists for variables, and text templates.  However, the reporting 
officer may add new lines and footnotes to the tables, if relevant. 
 
Based on public health priorities2,3,4 the Directive 2003/99/EC lists eight zoonoses and 
zoonotic agents to be monitored, and data are collected on a mandatory basis for the following 
zoonotic agents: Salmonella, thermophilic Campylobacter, Listeria monocytogenes, 
verotoxigenic E. coli, Mycobacterium bovis, Brucella, Trichinella and Echinococcus.  
Furthermore, mandatory reported data includes antimicrobial resistance in Salmonella and 
Campylobacter isolates, food-borne outbreaks and susceptible animal populations.  Also, 
based on epidemiological situations in MSs, data have been reported on the following 
zoonotic agents: Yersinia, Lyssavirus (the cause of rabies), Toxoplasma, Cysticerci, 
Sarcocystis, Coxiella burnetti (the cause of Q fever), Chlamydia psittaci, (the cause of 
psittacosis) and Leptospira spp.  Data on antimicrobial resistance in indicator E. coli and 
Enterococci isolates are also reported.  Since 2006, MSs have also submitted data concerning 
other microbiological contaminants such as histamine, Staphylococcal enterotoxins and 
Enterobacter sakazakii, for which food safety criteria are set out in the Community legislation 
1441/2007/EC.  In 2007, data were submitted by 27 MSs and two non-MSs (Norway and 
Switzerland).  
 
Decision 2119/98/EC on setting up a network for epidemiological surveillance and the control 
of communicable diseases in the Community, as complemented by Decision 2000/96/EC on 
the diseases to be progressively covered by the network, established data collection on human 
communicable diseases from MSs.  Since 2005, ECDC has provided data on zoonotic 
infections in humans, in conjunction with their analyses, for the CSR.  In 2007, the data used 
for analysis were derived from several disease networks: the new European Surveillance 
System (TESSy), which has been implemented and is maintained by ECDC, and one 
Dedicated Surveillance Network (DSN): Euro-TB.  In 2007, data on human zoonoses cases 
were received through the Communicable Disease Networks from all 27 MSs and additionally 
from four non-MSs: Iceland, Liechtenstein, Norway and Switzerland. 
 
Once the annual data has been submitted by MSs (deadline 31 May), data are collated, 
analysed and presented in the CSR. The CSR is prepared by EFSA in collaboration with 
ECDC and ZCC and published on EFSA’s homepage each year in December. 

                                                 
2 Opinion on Zoonoses from the Scientific Committee on Veterinary Measures relating to Public Health (Adopted 12 April 

2000) 
3 Opinion on Proposal for a directive on the monitoring of zoonoses and zoonotic agents from the Economic and Social 

Committee (OJ C 94, 18.4.2002 p.18) 
4 Opinion on the Resistance to antibiotics as a threat to public health from the Economic and Social Committee (OJ C 407, 

28.12.1998 p 7) 
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2. Objectives of this report 
 
The primary objective of report part I is to examine carefully the statistical analysis of 
temporal trends of zoonotic agents in animals and food that was carried out on data that were 
collected in 2006 for the CSR.  The statistical analysis was reviewed regarding methods 
which were used to take into account the two critical characteristics of the data: 

1. the disproportionate sampling of units, such as animals, groups of animals, or food, 
from different MSs; 

2. the potential correlation among the infection status of units sampled in the same MS, 
during subsequent years. 

 
To aid clarity and transparency, worked examples of different approaches are presented and 
discussed. 
 
Another important objective of this report is to present basic principles of survey 
methodology relevant for the interpretation and critical review of statistical analysis.  
Moreover, needs for the harmonisation of current data collection can be identified.  A small 
section of report part I is devoted to the communication of statistical analyses among 
professionals with different levels of statistical knowledge. 
 
An additional objective is to introduce issues that will be developed further in report part II, 
including spatial analysis and Bayesian statistics. 
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3. Statistical analysis 
 
3.1 Introduction to survey methodology 
 
In this section, basic concepts and principles of survey methodology and related statistical 
techniques are set out which are useful in the following sections on the statistical analysis of 
temporal trends.  This section is not meant to be exhaustive, and each concept and method can 
be studied further.  Guidance on field surveys within EFSA’s remit, and a glossary of terms 
can be found in a specific EFSA report5. 
 
 
Target population and sampling 
 
A sample survey is a study where a sample of elements or elementary units (herds, animals, 
food batches) or, in this case, of epidemiological units, is selected from a larger, well-defined 
population.  Observations are then carried out on elements of the sample, in order to draw 
conclusions on the population at large (target population) (Levy and Lemeshow, 1992; 
Boelaert, 2003). 
 
In surveys, a sample is selected from the sampling frame (also referred to as ‘frame 
population’), that is the set of all elements that could possibly be drawn.  In other words it is 
the part of the target population (the one to be generalised to) which is available for sampling.  
As an example, should a sample of broiler carcasses be selected from all of those which are 
produced in a country during a year (target population), access may only be given to those 
broiler carcasses which are processed in certain slaughterhouses, during certain periods of the 
year (sampling frame). 
 
In epidemiology, surveys are carried out both for estimating descriptive measures of disease 
frequency, such as incidence and prevalence, and for estimating the effects of risk factors on 
diseases, by relative risk, odds ratio, and other measures of association. 
 
 
Statistical inference and error 
 
In a survey, a parameter of interest is measured in the sample, with the objective of drawing 
conclusions on the value of the parameter in the target population.  Therefore, the value that is 
obtained for the sample is considered an estimate of the “real” value in the target population.  
For example, the proportion of units in a sample which are infected with a zoonotic agent 
(corresponding to prevalence for animals or proportion positive for food units) is calculated as 
an estimate of the proportion of infected units in the target population. 
 
The difference between the estimate and the real value - the error - can have two components 
(causes): 

1. random selection of individuals in the sample, in the presence of variability of 
probability of infection in the population (random error or precision); or 

                                                 
5 Report of Task Force on Zoonoses data collection on guidance document on good practices for design of field surveys, The 

EFSA Journal (2006), 93, 1-24.  
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2. selection of individuals which are characterised by a greater or smaller probability of 
infection in comparison with the probability in the population (systematic error or bias). 

 

 
Random error 
 
This is largely affected by the size of the sample relative to the target population and by the 
sampling design (or plan).  It is an error attributed to the fact that our investigation is limited 
to a random sample of the population, rather than to the whole population.  In fact, it is often 
called sampling error. A useful way to express the extent of the sampling error is to report the 
confidence interval (CI) of a parameter estimate.  In a practical definition, the CI corresponds 
to the interval covering the real value of the parameter in the population at a pre-assigned 
level of confidence. 
 
 
Systematic error 
 
This can be due to one or more groups of units which are characterised by a particularly small 
or great risk of disease, being over- or under-represented in the sample, in comparison with 
the target population.  For example, in the collection of data on Salmonella spp. in flocks of 
laying hens, different MSs may select samples from flocks corresponding to different 
fractions of their populations.  In this way, the MS composition of the sample of flocks would 
be different from the composition of the EU population.  Consequently, if the MSs that are 
over-represented in the sample are characterised by a relatively high prevalence of Salmonella 
spp. in flocks of laying hens, the estimate of EU level prevalence will be systematically over-
estimated.  The issue of systematic error is discussed further below in the section on stratified 
sampling. 
 
Coverage error is a specific type of systematic error which is likely to happen when the 
sampling frame (frame population) is not identical to the target population.  Two types of 
coverage errors generally arise when such correspondence does not exist: under-coverage and 
over-coverage.  Units that are in the target population but not in the frame population 
(sampling frame) constitute under-coverage.  On the other hand, units that are in the frame 
population but not in the target population constitute over-coverage.  It follows that under-
coverage units have zero probability of being selected for any sample drawn from the 
population.  If the risk of disease in these units differs systematically from the risk in other 
units in the target population, the estimate of prevalence will be biased (Särndal et al. 1992). 
 
 
Assumptions in the statistical analysis of survey data and confidence intervals 
 
In the majority of cases, data that are submitted to EFSA within the framework of the CSR 
derive from analytical tests for the detection of infection by zoonotic agents in animals and 
food.  Results of these tests can be either positive or negative and, therefore, are suitable for 
analysis by statistical methods for binary outcomes.  Statistical details on the estimation of 
proportions and confidence intervals are reported in Appendix B at the end of this report. 
 
When estimating the proportion of units that are infected with a zoonotic agent, the CI can be 
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calculated by using, for example, the binom.test function in the R package (http://cran.r-
project.org).  This is based on the binomial distribution (exact binomial CI) and it is valid 
even for low (<0.2) and high (>0.8) proportions.  Contrary to the asymptotic CI for a 
proportion, the exact CI for proportion holds for any sample size n (whereas the asymptotic 
CI requires a minimum-sized sample). 
 
The construction of a CI for a proportion is based on two basic binomial assumptions: 
 
1. the sample consists of n independent copies of the population variable of interest 

(infection/contamination indicator); and 
 
2. the probability of the event of interest (infection/contamination) is identical for all 

sample units (no heterogeneity in infection probability). 
 
It is, therefore, assumed that samples of independent and identically distributed (i.i.d.) random 
variables (observations) are drawn from an infinite population.  When the above assumptions 
are not met, specific statistical techniques have to be adopted in order to avoid systematic 
error and to obtain valid CIs.  The same assumptions must be taken into account even in the 
analysis of risk factors for diseases, by, for example, logistic regression, which is the most 
commonly used statistical model for binary outcomes (Hosmer and Lemeshow, 2000).  
Details on statistical methodology are reported in Appendix B at the end of this report. 
 
 
Finite vs infinite target population 
 
In a survey, if the sampling ratio is not small (i.e., if the sample is a relevant part of the target 
population), finite population corrections can be applied in estimating parameters, and the 
resulting CIs are relatively narrow in comparison to the situation when the population can be 
considered as infinite.  It is important to note that this correction limits the inference to a 
specific target population which is, therefore, the only interest of the investigator.  In this 
approach, also referred to as “design-based” inference, the values of the variable of interest in 
the population units are considered fixed values, even if not all are known.  The randomness 
from sample to sample derives from the random selection of any of the other possible samples 
from the finite population of interest.  This is commonly adopted in official control plans 
where the objective is, for example, to estimate prevalence or to declare freedom of infection 
(or a certain level of infection) in a well-specified population. 
 
When the population can be considered as infinite, the so-called “model-based” inference is 
referred to, which is based on the randomness of the i.i.d. random variables constituting the 
population units.  According to this approach, it can be considered that even the prevalence of 
infection in all animals in a country at a certain time is just an estimate of the risk of infection 
in the country and it is subject to random variation.  Consequently, all broiler carcasses 
produced in a country during a one-year period are but one of the potentially infinite 
“outcomes” of the broiler production and slaughtering process taking place in that country 
and in that year. Accordingly, the proportion of Camplylobacter spp. contaminated broiler 
carcasses, is but one of the possible results of a complex combination of factors acting during 
all phases of the poultry meat production.  This type of approach is most common in research. 
 
PROC SURVEYLOGISTIC (SAS, 2009) was specifically developed for the analysis of data 
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from surveys including finite population correction.  For a worked example, see Appendix A: 
Worked examples of the SAS procedure application, Example 2.  SURVEYLOGISTIC is 
very similar to PROC LOGISTIC (used for ordinary logistic regression) as it also allows to 
build a predictor model and to select a link function, but the inference is design-based rather 
than model-based. 
 
 
Effect of the type of sampling 
 
When describing random error and CI calculation, it was assumed that in this situation all 
units in the target population (if it coincides with the population frame) have the same 
probability of being selected to be part of the sample.  This corresponds to a simple random 
sampling.  Only two other types of sampling will be referred to below which are most 
relevant for this report: stratified and cluster sampling (Särndal et al. 1992; Levy and 
Lemeshow, 1992). 
 
 
Stratified sampling 
 
In stratified sampling, the units are classified into distinct groups, or strata, and a simple 
random sample is then drawn from each stratum.  Stratified sampling is usually carried out 
when strata are expected to differ in the parameter of interest and, in this case, it can provide 
more precise estimates (narrower CI) than those that can be obtained by simple random 
sampling.  For example, prevalence of an infection may differ in different types of farming 
such as total confinement of animals, or free-range farms.  Also differences among MSs in 
animal production and occurrence of the agent often justify the MSs to be considered as 
different strata. Separate, stratified sampling can be carried out in each farming type and 
results from the sample are used to obtain a more precise prevalence estimate.  Moreover, 
stratum specific estimates can be, of course, obtained by stratified sampling.  
 
When each stratum is equally represented in the sample as in the population, the stratified 
sampling is defined as proportionate (proportionate stratified sampling).  In this case, the 
calculation of prevalence of infection can be obtained, as in the case of simple random 
sampling, as the ratio between positive and tested units.  Conversely, if, for example, a certain 
type of farm constitutes 10% of the population and it is over-represented in the sample, where 
it accounts for 50% of the units (disproportion stratified sampling), the prevalence estimate 
can be affected by systematic error if prevalence is calculated as in random sampling. 
 
Stratified sampling may have an impact on the point estimates of parameters measuring the 
effects of risk factors as well as on their standard errors.  Therefore, disproportionate stratified 
sampling may also lead to complications in risk factor analysis.  A common way to account 
for disproportionate stratified sampling in the phase of statistical analysis (after the sample is 
collected) is the application of weights to each observation in the sample.  The role of 
weighting is to reconstruct the composition of the target population in the sample. 
 
For instance, if the same number of flocks of broilers was sampled in MSs with different 
broiler population sizes, MSs with small populations would be over-represented in the 
sample, whereas large MSs would be under-represented.  A common and simple weight is the 
reciprocal of the sampling proportion for flocks, which can be calculated as the number of 
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flocks constituting the population of a MS divided by the number of sampled flocks in the 
same MS. Flocks from large MSs, where a smaller fraction of the population was sampled, 
would, therefore, have a greater weight than flocks from MSs with smaller populations.  In 
this way, MSs would be represented, in the sample, in the same way as in the population.  
Another example, including graphical representation and step by step calculations, is set out 
in Section 6 Communication of methods and results of statistical analysis. 
 
In the SAS system, procedures such as SURVEYMEANS, SURVEYFREQ, SURVEYREG 
and SURVEYLOGISTIC were specifically developed to analyse data from stratified 
sampling.  In R, the survey package is available.  Other procedures, such as GENMOD, also 
allow the inclusion of weights to account for disproportionate stratified sampling.  Worked 
examples of weighting, including SAS programming codes, are presented in Appendix A: 
Worked examples of the SAS procedure application, Examples 3 and 6. 
 
 
Cluster sampling 
 
In cluster sampling, units are not individually selected from a sampling frame, but groups, 
(clusters) of units are primarily sampled. Individual units are subsequently examined from 
each cluster.  Units belonging to the same cluster cannot be considered as independent, e.g. 
cluster sampling can be carried out to detect zoonotic agents in poultry flocks 
(epidemiological units) that are grouped in holdings (clusters).  Poultry flocks belonging to 
the same holding share risk factors for the introduction of Salmonella.  Moreover, 
transmission of Salmonella spp. is more likely to occur among flocks belonging to the same 
holding than among flock of different holdings.  Ignoring such non-independence, or 
correlation, would lead to a relatively narrow CI of prevalence of infected flocks.  However, 
such a very precise estimate would be non-valid. 
 
 
Cluster sampling in risk factor analysis 
 
A further example of non-independent observations arising from cluster sampling can be seen 
in pigs slaughtered in the same slaughterhouse.  The pigs share a similar (correlated) risk for 
the contamination of carcasses with Salmonella spp., due to common conditions including, 
among others, the bacterial contamination of slaughterhouse environment, the hygiene during 
slaughter and subsequent processing, the slaughter techniques (EFSA, 2008). 
 
When estimating the effects of risk factors for Salmonella spp., if individual pig carcasses 
were used as the units of statistical analysis without taking into account non-independence, 
some risk factors might result as having a significant effect.  Such a conclusion may, 
however, be non-valid due to an under-estimate of the standard error and, consequently, of the 
confidence interval of the parameter measuring the association between the risk factor and the 
outcome: Salmonella spp. infection.  In fact, the effective sample size of the study was 
reduced because of the non-independence of observations.  
 
Non-independence of observations may arise in situations other than cluster sampling as 
discussed so far.  Repeated observations in time on the same units, for example, also result 
in correlation among outcomes (Diggle et al. 2002). 
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There are several ways to take into account clustering or correlation among observations 
when estimating prevalence and in risk factor analysis.  One way of correcting for correlation, 
which is used in SURVEYLOGISTIC, is by means of computing a so-called design effect.  
Generally, the design effect is a factor comparing the precision under simple random 
sampling with the precision of the actual design.  Standard errors, computed as if the design 
had been simple random sampling, can then be inflated using the design effect.  As a 
consequence, the probability of finding significant results might be reduced. 
 
In contrast to the previous viewpoint, correlation can be investigated. In fact, correlation 
among observations can be of scientific interest, and hypotheses can be generated on 
underlying risk factors and epidemiological processes.  Moreover, in the case of repeated 
observations in time, correlation may vary based on time intervals separating data collection.  
There are two important families of models which can be used for investigating correlation: 
marginal models and random-effects models.  In a marginal model, the effect of each risk 
factor on the outcome is obtained at population level, while there is no cluster specific 
parameter.  For binary data, one possible approach is to use generalised estimating 
equations (GEE) (Diggle et al. 2002; Aerts et al. 2002; Molenberghs and Verbeke, 2005).  In 
this approach, instead of specifying the full distribution for the correlated binary response, 
assumptions are made about the mean, variance and correlation.  In general, GEE yields the 
same parameter estimates as an ordinary logistic regression, but the corresponding standard 
errors are inflated as a result of correlation among observations (which is also estimated).  
Statistical significance is, therefore, more difficult to attain by using GEE than ordinary 
logistic regression.  
 
A variety of possible working correlation structures can be used in GEE.  Some of the more 
common choices are: 

a) independence: the simplest choice is the working independence model; 

b) exchangeable: it may be most appropriate when there is no logical ordering for the 
observations within a cluster; 

c) autoregressive: when repeated samples are taken at the same cluster, it can sometimes 
be assumed that the correlation between samples depends on the time 
lag between samples; 

d) unstructured: a totally unspecified correlation matrix. 
 
Worked examples of the analysis of non-independent observations by SURVEYLOGISTIC 
and by GEE (GENMOD), including SAS programming codes, are presented in Appendix A: 
Worked Examples of the SAS procedure application, Examples 4 and 5. 
 
Alternatively, in a random-effects model, the correlation among non-independent observation 
is taken into account by explicitly estimating a measure of the cluster effect as an additional 
parameter in the model.  This is based on the assumption that clusters (slaughterhouses, 
holdings) were randomly selected from a population.  In addition to estimating  population 
level parameters, random effect models allow the estimation of cluster-specific parameters 
(i.e. baseline level of prevalence and the effect of risk factors) and are most useful when 
inference to individual clusters is of interest (not available by using GEE) (Brown and 
Prescott, 1999; Littell et al. 1996).  The application of random-effects models on zoonotic 
agents will be developed in a subsequent report. 
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3.2 Description of the analysis carried out on 2006 data 
 
Data that were used for the statistical analysis of temporal trends in the CSR for 2006 
consisted of the number of tested units, the number of positive units, and the total number of 
units - population size - in each MS, for three years from 2004 to 2006. 
 
Graphical visualisation was carried out by diagrams using the lattice package in the 
R software (Sarkar, 2008).  In the graphs, the proportion of tested units that were positive for 
zoonotic agents during each year was plotted for each MS.  In Figure 1, the prevalence of 
Salmonella spp. in flocks of laying hens, by year and MS is represented.  The width of 95% 
exact, binomial confidence intervals, represented by vertical bars, is associated with the 
precision of the prevalence estimate.  Potential non-independence of observations from the 
same MS was not taken into account in estimating 95% CIs.  Therefore, in these graphs, CIs 
are reported in order to represent the effect on the number of units that were tested.  In fact, 
large sample sizes are associated with narrow CI’s and relatively precise estimates, 
conversely, estimates obtained using small samples are characterised by low precision and 
large CIs. 
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Figure 1. Prevalence of Salmonella spp. in laying hen flocks in nine MSs, from 2004 to 

2006.  Vertical bars represent 95% exact binomial confidence intervals. 
 
In order to obtain yearly estimates of the ratios between positive and tested samples, for 
groups of examined MSs, the SURVEYMEANS procedure in the SAS System was used.  A 
weight was applied for each observation, corresponding to the reciprocal of the sampling 
fraction in each MS (number of units in the population / tested units), to take into account 
disproportionate sampling at MS level (Figure 2).  Estimated numbers of laying hens in each 
MS were used as the number of units in the populations to calculate weights in the analysis of 
Salmonella spp. in laying hen flocks. 
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In the following SAS statement the yearly, weighted ratio of positive units, out of those that 
were tested, is obtained for all MSs providing data. 
 

 
 
The weight, wt, was obtained by dividing the number of units in the population by the number 
of tested units. 
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Figure 2. Weighted prevalence of Salmonella spp. in flocks of laying hens for each year 

from 2004 to 2006.  Data from nine countries were weighted by the 
reciprocals of the sampling fraction.  

 
 
Statistical significance of a three-year linear trend was tested by a weighted logistic regression 
for binomial data, using the SURVEYLOGISTIC procedure. 
 
In the following SAS statement MSs are identified as clusters of epidemiological units. 
 

 

proc surveylogistic; 
 cluster MS; 
 model positives/tested = year; 
 weight wt; 
run; 

proc surveymeans;  
 by year; 
 ratio positives / tested; 
 weight wt; 
run; 
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In SURVEYLOGISTIC, the cluster statement is used to deal with a design aspect, namely the 
random selection of cluster which leads to an additional source of variability in most practical 
cases.  In the zoonoses trend analyses application, the cluster statement is used to take into 
account correlation among observations from the same MS.  Consequently, the standard error 
for the parameter corresponding to the effect of year on the probability of a positive result is 
inflated and the probability of statistical significance reduced. 
 
Different approaches to the analysis were adopted.  The objectives were to compare results by 
using the SURVEYLOGISTIC and the GENMOD procedures, by taking account, or not, 
weighting and correlation among observations.  More in-depth comparisons among different 
approaches to the analysis are presented in the following section on the critical review of the 
statistical analysis carried out on 2006 data. 
 
 
3.3 Critical review of statistical techniques used for the 2006 report 
 
In this section, statistical techniques used on data for 2006 were examined.  A specific 
evaluation was made of the appropriateness of methods taking into account disproportionate 
sampling across MSs together with the non-independence of observations in logistic 
regression.  In fact, the fractions of the populations of animals and food which were sampled 
in different MSs varied with the year, leading to disproportionate stratified sampling.  From 
this point of view, MSs can be considered as strata.  Moreover, it can be reasonably assumed 
that correlation among observations from the same MS in subsequent years was present.  In 
this context, MSs would correspond to clusters.  Another issue related to sampling design in a 
survey, which will be considered in this section, is the finite population correction in logistic 
regression analysis, even though this was not included in the 2006 analysis.  
 
In order to carry out a review of statistical analysis, detailed information on the sampling 
process would be needed.  Specifically, it would be critical to know if data can be considered 
if collected through a random selection of units, or according to a specific survey design (such 
as stratified sampling based, for example, on geographical areas; cluster sampling, or multi-
stage sampling).  In this section, such details are considered as not available.  However, in 
general, it is acknowledged that sufficient information is available on data on zoonotic agents 
in animals which were analysed for time trends.  On the other hand, data on food are more 
problematic, and a major effort is needed to improve related information. 
 
 
Data on foodstuffs, animals and feedingstuffs 
 
The EU weighted ratio of positive out of tested units was estimated by weighting the MS-
specific proportion of positive units with the reciprocal of the sample fraction.  There is an 
important issue on the non-availability of the total number of units in the population and the 
use of “reliable proxies”.  For example, in the case of broiler meat, broiler population was 
used to calculate weights.  Estimated numbers of laying hens in each MS were used as 
populations to calculate weights in the analysis of Salmonella spp. in laying hens flocks (see 
the following examples).  This choice, which was dictated by data availability, should be 
reconsidered.  The use of flock population sizes would, in fact, be more appropriate for laying 
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hens.  Moreover, it would allow considering the inclusion of reasonable finite population 
correction.  In general, sensitivity analysis would be useful to assess the impact of the choice 
of weights on results at EU level. 
 
 
Statistical analysis of trends over time 
 
As for the estimation of proportions of positive units out of those that were sampled, weights 
were used in the analysis of trends over time to account for varying sampling fractions across 
MSs and in different years in the same MS. Population estimates (or proxies) for the year 
2006 were used, but this was not always specified. 
 
The SURVEYLOGISTIC procedure in the SAS System was used to examine any trend over 
time for the 2006 CSR.  The effect of year of sampling was examined through a linear trend 
(with only two parameters, namely, the intercept and the effect of year), assuming that the 
frequency of zoonotic agents changed by the same amount for every year, namely the same 
change in prevalence occurred from 2004 to 2005 and from 2005 to 2006.  This was due to 
the fact that interest was in the overall trend at EU level. 
 
In SURVEYLOGISTIC, the CLUSTER statement names variables that identify the clusters in 
a clustered sample design.  It is also assumed that clusters are randomly sampled from a 
sampling frame.  In the context of the CSR data, no information is available on cluster 
sampling or on the random selection of clusters from a frame.  However, the cluster statement 
was used to account for non-independence of observations from the same MS. 
 
The issue of non-independence as mentioned in the report is related to the concept of “over-
dispersion” of binomial data, where frequency counts of positive and of tested units are 
available in an aggregate fashion.  An alternative data format would be the binary format, 
where one observation is available for each unit which is attributed a Bernoulli type outcome 
(positive or negative in the case of diagnostic tests). 
 
SURVEYLOGISTIC was specifically developed for design-based analyses.  Therefore, it is 
not the most appropriate procedure to account for correlated data in the absence of a specific 
sampling design.  In this context, a model-based approach would be more appropriate and 
generalised estimating equations (GEE, procedure GENMOD in SAS) or generalised linear 
mixed models could be used (SAS procedures NLMIXED, GLIMMIX).  Moreover, such 
models also allow the incorporation of serial correlation structures in addition to a time trend.  
However, from a practical point of view, the ultimate effect of using the CLUSTER statement 
in PROC SURVEYLOGISTIC is to account for non-independence of observations belonging 
to the same cluster, and the results are almost identical to those obtained using PROC 
GENMOD for repeated observations. 
 
Another important and general concern about the “trend over time” analysis is the very 
limited time related information in the data, as data for only three consecutive years were 
available for the analysis at hand (2004, 2005 and 2006). 
 
In order to carry out a thorough review of the analyses of time trends which were carried out 
on the 2006 data, worked examples of possible approaches to the analysis were carried out on 
a selected data set on Salmonella spp. in flocks of laying hens.  Please refer to Appendix A for 
worked examples of the SAS procedure application. 
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Summary of results of the review of the analysis by worked examples 
 
In this section, a critical review was carried out of the statistical analysis of time trends on 
data which were provided by MSs to EFSA within the context of the CSR.  Data were 
provided in an aggregated way, as frequency counts of tested and positive epidemiological 
units.  Therefore, no information on individual units, such as, for example, exposure to 
potential risk factors, was available.  Nevertheless, it was decided to carry out statistical 
analyses on certain zoonotic agents, animals and food.  
 
In some cases, the level of harmonisation was believed to be sufficiently high to warrant valid 
conclusions.  Since it is reasonable to believe that data collection was sufficiently harmonised 
in different years within the same MSs, statistical methods for repeated observations at MS 
level provided valid results even if harmonisation among MSs was not perfect.  In general, 
statistical analysis of time trends was carried out as an incentive and a guide to an improved 
data collection process. 
 
The purpose of these analyses was to give as correct and accurate as possible estimates of 
time trends.  Therefore, statistical techniques were applied to take into account two main 
characteristics of the data collection, namely, the disproportionate sampling from MS 
populations, and the potential correlation among probabilities of infection in animals and food 
from the same MS (non-independent observations). 
 
The SAS procedure SURVEYLOGISTIC was used in the analysis of data for 2006.  In order 
to carry out a careful review of the analyses, examples are given of different approaches to the 
analysis, based on different options available in the SURVEYLOGISTIC and the GENMOD 
procedures, which were used in the same data set.  Both procedures can be used to deal with 
disproportionate sampling and non-independent observations.  There are, however, 
differences between the so-called design-based analysis, performed by SURVEYLOGISTIC 
(allowing, for example, for finite population correction), and the model-based analysis by 
GENMOD, in addition to different technical details. 
 
In order to account for non-independence of observations, the cluster statement was used in 
SURVEYLOGISTIC whereas, in GENMOD, generalised estimating equations (GEE) were 
fitted by using the REPEATED statement.  The two procedures and statements both resulted 
in increased standard errors of the parameter estimates.  This is because non-independence of 
observations generally corresponds to a reduction of the effective sample size and 
consequently the probability of finding significant time trends is reduced. 
 
Although the CLUSTER statement in SURVEYLOGISTIC was developed to deal with a 
specific design where clusters were the primary sampling units, its use to account for potential 
correlation among outcomes can be considered as valid even in the absence of detailed 
information on survey design.  In the analysis of data of zoonotic agents, MSs were 
considered as clusters to account for repeated observations across years.  This was a 
pragmatic use of the SURVEYLOGISTIC procedure, leading to a cautious approach to 
testing for significance of trends. 
 
When accounting for disproportionate sampling in SURVEYLOGISTIC, weights are 
automatically standardised and, therefore, sample size is not inflated.  When using 
GENMOD, weights need to be standardised so that their sum is equal to the sample size.  
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Standardisation is, however, automatically performed in GENMOD if the repeated statement 
is used (GEE). 
 
In the analysis of data on Salmonella spp. in laying hens, standard errors of parameter 
estimates are inflated after accounting for non-independence of observations, in comparison 
with standard errors from ordinary logistic regression (that assumes independence of 
observations).  On the other hand, it is of interest to note that, on this specific data set, 
standard errors are not inflated when simultaneously taking into account non-independence 
and disproportionate sampling, with the inclusion of weights (set out in Appendix A: Worked 
examples of the SAS procedure application, Example 5).  This was not the case in the analysis 
of Salmonella spp. in broiler meat (analyses not shown) where both the cluster statement in 
SURVEYLOGISTICS and the repeated statement in GENMOD yielded inflated standard 
errors of the parameter estimates, even in the presence of weights.  In certain data sets, the 
inclusion of weights may affect the correlation among observations within the same clusters 
therefore reducing the effect of using specific statistical techniques for non-independent 
observation. This does not, however, reduce the validity of the general effect of increased 
standard errors after taking into account clustering. 
 
Several options to account for survey design are available in PROC SURVEYLOGISTIC.  
MSs can be considered as strata, rather than clusters, using the STRATA statement.  In 
general, stratified and cluster sampling are two distinct designs.  In the analysis of zoonotic 
agents, it was, cautiously, decided to use the CLUSTER statement to account for repeated 
measurement from the same MS over three years.  It is important to note that the same 
variable (i.e. MS) cannot be used in both the CLUSTER and STRATA statement. 
 
In SURVEYLOGISTIC, finite population corrections can be applied at population level and 
for specific strata.  As expected, standard error estimates were reduced with increasing 
sampled fraction (as set out in Appendix A: Worked examples of the SAS procedure 
application, Example 2) and smaller population.  In the data used in our example, the sample 
was a very small fraction of the population and, therefore, the finite population correction had 
a negligible effect on the results.  Using the number of laying hen flocks instead of the 
number of laying hens as population sizes would have lead to different results. 
 
In PROC GENMOD, different types of correlation among observations can be chosen, based 
upon hypotheses on the mechanism giving rise to the correlation.  If, for example, certain 
permanent characteristics of individual MSs can be considered as associated with the outcome 
of interest (i.e. Salmonella spp. infection in laying hens) the exchangeable correlation type 
can be selected.  This is based on the assumption that correlation among observations from a 
specific MS in different years is the same regardless of the time period between observations.  
If, on the other hand, observations close in time can be considered as more strongly correlated 
than observations separated by longer time periods, then autoregressive correlation can be 
used.  In Example 4, Appendix A, the choice of the correlation structure did not affect 
parameter estimates. 
 
Moreover, in GENMOD, the scale option is available to correct over-dispersion of counts in 
those cases where variability is greater than expected according to the binomial distribution.  
This is another way to account for correlated observations (giving rise to over-dispersion) 
which can be used for very heterogeneous proportions.  The outcome is generally very 
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cautious and statistical significance is more rarely attained in comparison with the other 
approaches that are presented (CLUSTER in SURVEYLOGISTIC and GEE in GENMOD). 
In a further analysis, year was regarded as a categorical variable.  The effect of year was 
coded in such a way as to compare the year 2006 against 2004 and 2005 respectively; 2006 
was, therefore, used as the baseline year.  Prevalence of Salmonella spp. in laying hens in 
both 2004 and 2005 was greater than in 2006, confirming the decreasing time trend.  
However, the parameter comparing 2005 and 2006 (0.74, as set out in Appendix A: Worked 
examples of the SAS procedure application, Example 8) was greater than the parameter 
comparing 2004 and 2006 (0.55), indicating that prevalence increased between 2004 and 
2005, but then decreased to its lowest level in 2006.  That is, there was a non-linear effect of 
year on prevalence.  The original analysis, which was used for the CSR on 2006 data, 
disregarded such a non-linear effect and only considered a linear trend.  This was due to the 
particular interest in the overall trend of prevalence.  Nevertheless, it is advisable to explore 
and test for non-linear trends. 
 
 
Further developments 
 
This report was limited to the discussion of techniques that were used in the 2006 CSR, using 
PROC SURVEYLOGISTIC, and related options in PROC GENMOD, in the SAS System.  In 
a subsequent report, analyses will be carried out on the same data by using alternative 
packages, such as R (www.r-project.org) and STATA (www.stata.com).  Results from the 
three packages will be compared and possible differences and discrepancies will be discussed.  
In addition, random-effects models will be shown as means for analysis of the same data sets.  
The advantage over the technique currently used would be the estimation of MS-specific 
parameters, which is an important objective for both EU institutions and individual MSs.  For 
the same objective, the Bayesian approach will be described and considered as a valid 
alternative in the analysis of data from non-independent observations. 
 
 
3.4 Conclusions and recommendations of the statistical trend analyses 
 

• The most important characteristics of the data available on zoonotic agents in animals and 
food, which were provided by MSs to EFSA, from 2004 to 2006, were taken into account 
in the analysis of time trends, namely: 

a) disproportionate sampling in reporting MSs; and 

b) correlation among observations in the same MSs in subsequent years. 

• The use of two SAS procedures based upon different conceptual statistical approaches 
(SURVEYLOGISTIC: design-based approach; GENMOD: model-based approach) 
provided the same or very similar results when options for taking into account 
disproportionate sampling and correlation among observations.  

• The CLUSTER statement in SURVEYLOGISTIC was used to take into account the 
correlation of observations in subsequent years. This corresponded to a cautious approach 
to the test of the hypothesis of significant temporal trends in the proportion of 
epidemiological units that were infected by zoonotic agents. 

• In the data set that was used in the worked examples in this report (Salmonella spp. in 
laying hens), flocks were the unit of analysis.  Nevertheless, the number of laying hens in 
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each MS was used in the calculation of weights to account for disproportionate sampling.  
An effort should be made to obtain reliable information on the number of flocks in MSs 
since it would be the most appropriate population estimate.  Such information would 
allow the application of finite population correction if considered as appropriate (design-
based approach). 

• If a model-based approach to the analysis would be chosen, therefore, interest would be 
in the risk of infection in MSs, rather than in the particular epidemiological units that 
were tested at a specific time and GENMOD would be more appropriate than 
SURVEYLOGISTIC.  In fact, in GENMOD, different types of correlations among 
observations in different years could be used.  It could be hypothesised, for example, that 
observation separated by only one year would be more correlated than observations 
separated by two or more years. 

• In the example presented in this report (Salmonella spp. in laying hens), the effect of year 
on prevalence of infection was clearly non-linear.  However, in the published analysis, 
year was included as a continuous variable, therefore assuming linearity of effect.  Non-
linearity could be anticipated by exploratory and graphical analysis and verified through 
appropriate techniques.  However, in the analysis carried out by EFSA, interest was on 
general trends and not on comparison among individual years.  Nevertheless, different 
options should be tested. 

• Other options for the analysis would be available.  In the examples, the use of the scale 
parameter in GENMOD was included to take into account over-dispersion of binomial 
counts.  This approach should be considered only in the case of extreme heterogeneity of 
counts with consequent difficulties in model-fitting, since standard errors of parameters 
are greatly inflated and the result is very conservative and statistical significance is more 
rarely attained. 
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4. Alternative approaches to statistical analysis: the Bayesian approach 
 
Although 200 years old, Bayesian statistics have been increasingly developed and used in the 
last few decades, especially in the field of biological applications.  As a matter of fact, since 
the 90s, all the theory and toolboxes have become mature, robust and sufficiently advertised 
to be widely implemented by statisticians. 
 
Bayesian statistics are fundamentally based on a different paradigm as the one from 
“frequentist” statistics. In a nutshell, model parameters are not assumed to be a fixed 
unknown constant to be estimated, but instead they are seen as random variables.  The point-
estimate problem of frequentist statistics is turned into a more general problem of finding the 
distribution over parameters.  Such a distribution (called posterior distribution) quantifies all 
uncertainty and information present in the model and the data, but also possibly from other 
prior sources of knowledge available (defining prior distribution of parameters).  
 
Once evaluated, the posterior distribution over parameters can of course provide all the 
common quantities of interest such as estimates and confidence intervals, but also much more 
at no or little cost.  For example, in the case of trend analysis, posterior distribution of trend 
parameters would also easily provide outputs such as “the posterior probability that the trend 
is more than 10% per year is above 60%” that could helpful for risk managers to appreciate 
the information/uncertainty gathered.  
 
The evaluation of posterior distributions is generally made using specific Monte Carlo 
simulation algorithms called Monte Carlo Markov chains (MCMC). Even in dedicated 
software packages such as WinBUGS (freeware, see Lunn et al., 2000), the convergence 
assessment of those MCMC is usually left to the end-user, based on diagnostic plots and 
convergence tests provided by the software. In WinBUGS, this can be done using the built-in 
Gelman-Rubin test statistics which should be close to one at convergence, and with other 
diagnostic plots such as MCMC trajectories and posterior densities visualisation.  Details, 
theory and examples of Bayesian methodology could be found e.g. in Gelman, 2002 or 
Robert, 2007. 
 
Generally speaking, Bayesian statistics are particularly suitable in the following cases: 

• when fitting random-effects (multi-level hierarchical) models; 

• when the information is regularly updated; 

• when information from different sources of various levels of reliability has to be 
combined together (e.g. EU information combined with industry information and expert 
knowledge and local surveys etc...); 

• in the context of decision analysis with uncertainty; 

• when making predictions or extrapolation to the future, with uncertainty; and 

• when the sample size is low and classical (asymptotic) tests are no longer reliable. 
 



  

 
Statistical analysis of temporal and spatial trends 

of zoonotic agents in animals and food 
 

 

The EFSA Journal (2009) 253, 25-77 

 

The “prices” to pay for using Bayesian approaches include: 

• minimal expertise in statistical modelling and Bayesian algorithms are needed as each 
model needs to be hard-coded, and convergence of algorithm checked and monitored by 
the end-user; 

• computation time is generally larger than for non-Bayesian approaches. 
 
 
4.1 Possible benefits of using Bayesian approaches for trend analysis 
 
In the context of trend analysis for zoonotic agents, Bayesian analysis could be beneficial for 
the following reasons: 

• to facilitate statistical inference:  
o Bayesian inference algorithms are much more “decorrelated” from modelling 

assumptions, e.g. there is no need to make assumptions on residual distributions, 
on linearity etc.; 

o by enabling easy updates of results once new information comes up (e.g. new 
survey results); 

o by enabling complex model-based inference e.g. using mixed-effects models, 
nested random-effects, missing values imputations etc.; and 

o Bayesian analysis offers suitable standard model selection procedures for mixed-
effect models. 

• to use or weight all information available: 
o data on zoonotic agents in animals and food may come from other 

various/heterogeneous sources including EU baseline surveys, national surveys or 
monitoring programmes etc.; and 

o to deal with sample sizes, missing data and uncertainty in a natural and 
straightforward way. 

• to ease results communicability and exploitability for risk managers: 
o Bayesian outputs can be displayed in terms of probability distributions which are 

generally richer and more intuitive than p-values from the frequentist tests; and 
o the Bayesian set-up is by nature suitable for decision-making with uncertainty and 

for predictions for decision-makers (e.g. by deriving the probability that a given 
target is achieved within a given time frame). 

 
Please refer to Appendix C for an illustrative example.  
 
 
4.2 Conclusions and perspectives of Bayesian approaches for trend analysis 
 
Bayesian approaches are flexible and powerful tools to fit ad hoc models and to integrate 
heterogeneous information.  The simplistic example presented in Appendix C, also illustrates 
how the use of additional information such as population sizes of MSs with missing 
prevalence information could be used.  Models that could benefit from such inference 
techniques include, for example, mixed-effects models (especially with several hierarchical 
levels), latent class variable models and Markov models.  Many applications have been 
implemented, mostly in the areas of economy, marketing and ecology (for example a free 
software package is available for ecological applications, called BEAST (Bayesian Ecological 
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Analysis of Statistical Trends) (www.beastsoftware.org), for Bayesian estimation of 
population trends, which requires the user to do no programming).  For longer term purposes, 
time and space trend analyses could also be investigated within a Bayesian set-up. 
 
The main software packages for Bayesian inference include WinBUGS for general models 
and GeoBUGS for spatial data, possibly plugged into an R procedure.  Alternatively, specific 
ad hoc MCMC algorithms can be coded in Matlab, S Plus, R and even in SAS using PROC 
IML.  Such ad hoc programming should be left to the most complicated cases, as a high level 
of expertise in stochastic algorithms is required for robust analysis.  In the simplest examples 
or for results validation, SAS PROC GENMOD could also be used with SAS version 9.2. 
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5. Spatial epidemiology 
 
The objectives of spatial epidemiology are the description of spatial patterns, identification of 
disease clusters and the explanation and prediction of disease risk. In order to achieve these 
objectives, georeferenced data (points or areas) need to be used in addition to classical 
attribute data to describe the characteristics of the entity studied. 
 
With recent advances in spatial analysis tools - geographic information systems (GIS), 
satellite imagery, spatial statistics and models - spatial analysis is becoming a core component 
of epidemiological research and training.  For zoonotic diseases, with their complex 
transmission systems and the dependence on environmental factors of both reservoir hosts, 
pathogens and human exposure, spatial epidemiology is particularly important. Simultaneous 
consideration of both space and time, following separate spatial and temporal analyses is a 
particularly powerful approach to study temporal and spatial trends of zoonoses. 
 
EFSA, with its mandate for surveillance, reporting and control of food-borne zoonoses, is in a 
unique position to take the lead in the identification of the most appropriate statistical 
methods for analysing the geographical distribution of zoonotic agents, as well as in 
addressing the limitations and constraints associated with spatial data and their interpretation. 
 
This section aims to give an introduction to spatial epidemiology, illustrating the main 
components of the spatial analysis framework, such as: 

• data management of both attribute and georeferenced data; 

• spatial analysis methods: visualisation, exploration and modelling. 
 
First, a brief description of data management is set out with particular reference to EFSA’s 
geodatabase.  A concise overview of the spatial analysis methods most commonly used in 
veterinary epidemiology is then set out.  Current needs and required actions for developing 
spatial analysis approaches of zoonoses will be described in the conclusions of this section. 
 
 
5.1 Data management: EFSA’s Geodatabase 
 
Management of georeferenced data is performed using geographic information systems (GIS) 
and database management systems (DBMS), and is of relevance throughout all the phases of 
spatial data analysis. 
 
A geodatabase is available at EFSA and currently populated with the most common baseline 
data, such as classified administrative boundaries based on the “Nomenclature of territorial 
units for statistics” (NUTS).  Currently, the 2007 CSR data for a number of selected variables 
(mostly country level prevalence data for selected zoonoses and host species) were extracted 
and stored in the geodatabase and were used for the production of the maps included in the 
2007 CSR.  The GIS software available at EFSA is ESRI ArcGIS Desktop (ArcEditor license) 
as well as the web-based ArcGIS Server. A GIS Community site was created as an 
aggregation point for GIS users and projects at EFSA and to facilitate access to geodata and 
geoprocessing resources. 
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5.2 Spatial analysis methods 
 
Spatial analysis methods can be divided into three groups: visualisation, exploration and 
modelling: 

1. visualisation is probably the most commonly used spatial analysis method, resulting in 
maps that describe spatial patterns and which are useful for both stimulating more 
complex analyses and for the communication of their results (Pfeiffer et al., 2008); 

2. exploration of spatial data involves the use of statistical methods to verify whether 
observed patterns are random in space or not; and 

3. modelling introduces the concept of cause-effect relationships using both spatial and 
non-spatial data sources to explain or predict spatial patterns (Pfeiffer et al., 2008). 

 
In the following paragraphs a concise overview of the visualisation and exploration methods 
most commonly used in epidemiology is set out.  Modelling methods will not be covered in 
this report. 
 
 
5.2.1 Visualisation of spatial data 
 
Visualisation techniques are represented by charts, graphs, diagrams, and maps.  The goal of 
visualisation is to help assessment of the range and the general nature of data.  Using different 
visualisation techniques it is possible to answer the following questions: what is the 
distribution of attributes (e.g. population, disease cases, farms, prevalence, etc.)?  What is the 
arrangement of values across space?  Where are the outliers?  In spatial epidemiology, 
visualisation methods, resulting especially in maps, are particularly important to visualise the 
spatial pattern of the data and investigate the presence of disease clusters.  Visualisation also 
represents a key tool for the successful communication of epidemiological data.  Indeed, it is 
particularly important in communication with administrators, policy-makers, the public and 
other non-scientific audiences. 
 
The advantages of using maps to convey research findings and to record and guide 
surveillance and control efforts are obvious.  What also needs to be considered is the risk of 
misinformation through maps.  Maps are pictorial models.  Like all models they are selective 
in the type, amount and accuracy of information they present and cannot, at the same time, be 
general, precise and realistic.  Like pictures, the selection of shapes, lines, and colours is 
crucial.  Moreover, every map should include a scale bar, to let people understand the distance 
measurements, an indication of north, a legend, a listing symbol and attribute classification 
used on the map. 
 
In addition to maps, other tools of visualisation, such as graphs, diagrams and tables can be 
used independently, but also linked to maps to optimise the visualisation of findings and 
recommendations. 
 
The choice between different types of maps depends on the nature of the data to be visualised 
and on the objectives of the study. Examples of spatial data are point data and aggregated 
data. 
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Point data.  The most frequently used method for visualising point data (such as single cases 
or outbreaks of disease) is to plot the location of the study subject using point maps.  These 
types of maps use dots to show the occurrence of events in space, representing it with 
different symbols.  Dots can either represent the simple location of the event and a 
quantitative attribute (using symbols of different sizes).  Point maps provide a means of 
presenting the data in its raw format.  This can be particularly useful for communication, 
allowing the appreciation of the spatial pattern without being burdened by the technical 
details of any analysis carried out to facilitate data display. 
 
One of the possible problems encountered when using point maps if there are many events at 
the same location is when resulting point maps tend to be cluttered, making it difficult to 
appreciate the density of events.  In order to visualise better high densities of events at the 
same location, point data can, for example, be summarised by areas (e.g. administrative units, 
regions, etc.) and visualised using maps specific for aggregated data, such as choropleth 
maps. 
 
Aggregated data.  The most common form of data aggregation occurs when counts of 
disease events within a defined area are summed to yield the total number of disease cases in 
each area. Disease counts can be expressed as a function of the population size to provide 
estimates of prevalence or incidence risk per unit area. Data aggregated over previously 
defined regions (such as countries, provinces) can be displayed using choropleth maps. 
 
A choropleth map is a map in which areas are coloured or shaded in proportion to the 
measurement of the variable being displayed on the map, such as population density or 
prevalence of disease.  In a choropleth map, the data values that fall within a specific class 
interval are assigned a unique colour, shade or pattern.  
 
A key issue in choropleth mapping is the choice of the classification schemes used to divide 
continuous attribute data into categories.  Indeed, changing the class interval scheme 
(e.g. natural breaks, quantile breaks, equal-interval breaks, etc.) can fundamentally change 
how the map looks and the message it sends.  The most common classification schemes used 
to visualise continuous data in choropleth maps, are: 

• natural breaks: where classes are defined according to apparently natural grouping of 
data values; 

• quantile breaks: where data are divided into pre-determined numbers of classes which 
contain an equal number of observations; 

• equal-interval breaks: in which the difference between the highest and the lowest 
attribute value is divided into evenly spaced steps; 

• standard deviation classification: when using this method, the GIS calculates the mean 
value and then generates class breaks in standard deviation measures above and below it. 

 
In order to show the impact of changing class interval schemes, examples of choropleth maps 
using natural breaks, quantile breaks and equal-interval breaks are reported in Appendix D. 
 
The nature of areas themselves presents several challenges for mapping.  The map’s 
appearance and the message it conveys vary depending on size, number, and configuration of 
area units, leading to the so-called “modifiable area unit problem”, MAUP (Openshaw, 
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1984).  One important aspect of this problem is the location of area boundaries in relation to 
the distribution of health events and population. Indeed, depending on where boundaries are 
located, the areas can divide clusters of disease or concentrate them in a single zone.  
Choropleth maps vary with the number and sizes of area units. Small areas are more likely to 
capture the underlying pattern of health events, showing finer variation over space. 
Conversely, large areas conceal local differences, increasing the impact of MAUP.  When 
mapping data aggregated by area, it is therefore essential to analyse the effects of the 
modifiable area unit problem both on maps and results.  One of the possible solutions to 
MAUP is using small-area data, which allow mapping more detailed spatial patterns than with 
large-area information. 
 
Another issue to be considered when dealing with area-data is the problem of very high rates 
associated with a small population, also known as the “small numbers problems” (Cromley 
and Mclafferty, 2002). Indeed, when using choropleth maps of disease incidence or 
prevalence with areas differing in population size, the calculated rates of disease for those 
areas have different degrees of reliability. Rates for areas with small populations vary more 
and are less reliable than those for large areas.  For small areas, a difference of one or two 
cases can make a huge difference in incidence or prevalence rates. Different methods can be 
used for addressing the small numbers problem, such as for example the empirical Bayes 
smoothing. In empirical Bayes smoothing, rates are adjusted according to the size of the 
population on which they are based.  The smoothing process brings raw rates closer to the 
mean rate across all areas (e.g. national or regional rate) making the rates more stable and less 
variable.  The rates for small areas are smoothed more than those for large areas, reflecting 
differences in reliability linked to population size.  
 
 
5.2.2 Exploration of spatial data 
 
One of the main objectives of explorative analysis is to identify clustering of disease 
occurrence.  If mapping the occurrence of a disease may provide a general idea of where the 
disease is, explorative analysis will prove, through statistical tests that the pattern visualised is 
not random, but caused by underlying factors.  Determination of true clustering versus 
apparent clustering is an integral part of epidemiologic surveillance and interpretation. 
 
Spatial clustering of a disease provides useful information on the possible causes of the 
disease.  Methods to investigate spatial clustering could be used before the application of any 
spatial model, and, of course before recommendations for interventions and control measures 
are determined and applied.  
 
A variety of statistical methods to detect and describe spatial and temporal clustering have 
been developed from descriptive spatial statistics to tests for spatial clustering, tests for 
temporal clustering and tests for time-space clustering.  Applications have been most common 
to vector-borne and zoonotic diseases as well as to cancer and health care delivery and access. 
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Several problems exist in studying clusters: 

a. disease events are often rare and case occurrence may occur over a long period; 

b. information on the population at risk may be unavailable; 

c. rates of disease expected in the absence of clustering may be unknown; 

d. the choice of spatial and temporal units may influence the identification of clusters; and 

e. different weight matrices can be taken into account (not only real distances, but also for 
example intensity of trading between countries). 

 
An important issue to be considered when investigating clustering is to define the 
geographical extent, or scale, to which clustering occurs.  Scale critically affects the kinds of 
inferences that can be drawn (Cromley and Mclafferty, 2002).  For example, clustering within 
small areas or communities reflects localised factors such as point of source of environmental 
contamination.  Conversely, elevated disease rates for states or regions result from region-
wide factors like climate, international animal and foodstuff trade policies, etc.  The scale to 
which a health problem is studied should reflect an understanding of the disease process and 
likely causative factors (Cromley and Mclafferty, 2002).  It is important to keep in mind that 
patterns at one geographical scale can conceal patterns at other scales.  For example, a 
country’s “average” rate of a certain zoonosis in animal population may result from having 
some administrative areas with unusually high rates and others with unusually low rates.  
Such high rate administrative areas are lost in the state-wide average, and can be revealed 
only using analyses below the country scale. 
 
Analysing clustering requires a set of criteria to assess how much cluster exists and then to 
define “significant” clusters.  In general, spatial and space-time methods rely on statistical 
criteria that describe the likelihood of clusters arising by chance in a given population.  Such 
criteria may use a known probability distribution such as the Poisson distribution, or they may 
use the Monte Carlo simulation methods which involve generating a large number of random 
possible outcomes (Cromley and Mclafferty, 2002). 
 
The techniques adopted for analysing spatial patterns of disease depend on the type of data 
available.  These methods are usually divided in two groups: global and local clustering 
methods.  Space-time clustering methods are furthermore applied to investigate the space-
time pattern of disease spread. 
 
Some of the most common methods for investigating spatial and space-time clustering of 
diseases are mentioned in the following paragraphs, and they are described in more details in 
Appendix E Spatial Statistics. 
 
 
Spatial methods for investigating global clustering 
 
Global clustering methods are used to test for spatial clustering throughout the study region 
without the ability of locating specific clusters sites.  Their results provide a single statistic 
that measures the degree of spatial clustering, the statistical significance of which can also be 
assessed.  The null hypothesis of global clustering methods is simply that “clustering does not 
exist” (Pfeiffer et al., 2008). 
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Examples of global clustering tests for aggregated data used in veterinary epidemiology 
include indices of autocorrelation, such as Moran’s I and Geary’s C.  Autocorrelation 
measures the extent to which the occurrence of an event in a geographical unit (points or 
polygon) makes the occurrence of an event in a neighbouring geographical unit more 
probable.  The most commonly used global clustering methods for point data include the 
Cuzick and Edwards test and the global second-order K-functions (Ripley’s K-function and 
weighted K-function), all of which are described in Appendix E Spatial Statistics. 
 
 
Spatial methods for investigating local clustering 
 
Local clustering methods define the location and the extent of the identified spatial clusters 
and can be divided into focussed and non-focussed tests.  Non-focussed statistics, or simply 
local methods, identify the location of all likely clusters in the study region, while focussed 
statistics investigate whether there is an increased risk of disease around a specific location or 
focus.  These tests are particularly useful for exploring possible clusters of disease near 
potential sources of infection (Pfeiffer et al., 2008). 
 
An important class of methods for investigating local spatial clustering includes localised 
measures of spatial dependence such as the most commonly used Local Moran test and Getis 
and Ord Gi and Gi

* statistics.  Alternative tests for identifying local spatial clustering are based 
on scanning local rates, such as the spatial scan statistic.  The above mentioned examples of 
local clustering methods are described in Appendix E Spatial Statistics. 
 
 
Space-time clustering methods 
 
An important issue in monitoring communicable diseases and planning interventions is to 
understand the space-time pattern of spread.  Investigating space-time clustering consists in 
evaluating whether, for example, cases that are close in space are also close in time and vice 
versa, adjusting for any purely spatial or temporal clustering.  Various space-time clustering 
tests have been developed for this purpose; among them one of the most used is the Jacquez’s 
k nearest neighbours test (see also Appendix E Spatial Statistics). 
 
 
5.3 Conclusion and further developments 
 
This section set out an introduction to spatial epidemiology, illustrating the main components 
of the spatial analysis framework as well as a brief description of data management with 
particular reference to EFSA’s geodatabase.  Successively, point maps and choropleth maps 
have been reported as an example of visualisation methods for point and aggregated data, 
respectively.  Possible problems of visualisation techniques, such as MAUP and “small 
numbers problems” have been also briefly addressed.  A schema of the spatial statistics 
described in this report is given below: 

• Global measures of spatial clustering:  
o Aggregated data: Moran’s I and Geary’s C; and 
o Point data: Cuzick and Edwards test, Ripley’s K-function and weighted K-

function. 
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• Local measures of spatial clustering: 
o Aggregated data: Local Moran test and Getis and Ord Gi and Gi

* statistics; 
o Point data: spatial scan statistic. 

• Space-time statistics: Jacquez’s k nearest neighbours test. 
 
Spatial statistics mentioned above represent an example of the methods most commonly used 
for studying the epidemiology of zoonoses.  New methods for detecting local clustering are 
continuously being developed, such as several Bayesian approaches. 
 
Identifying spatial clustering of diseases can provide useful information on the possible 
causes of diseases and can help better understand their epidemiology.  Investigating possible 
disease clustering requires a systematic approach.  When performing explorative spatial 
analyses it is good practise to apply first global spatial statistics in order to identify the 
presence of significant clusters throughout the study region.  Once significant spatial 
clustering at global level is identified, local spatial statistics can be applied to detect the 
location of disease clusters.  In general, it is recommended that a combination of statistics be 
used when studying local clustering to ensure that different aspects of spatial patterns are 
identified and to check whether the results from different analyses are consistent.  
 
An important issue to be addressed when investigating clustering of diseases is to define the 
geographical extent, or scale, to which clustering occurs, since scale critically affects the 
kinds of inferences that can be drawn.  In order to evaluate how the choice of different scales 
may affect the outcome of epidemiology investigations carried out by EFSA and the kinds of 
inferences that can be drawn, data at different geographic scales are needed.  Based on the last 
considerations, the working group on statistical analysis of temporal and spatial trends 
considers it important to identify a specific case study to serve as a prototype on the use of 
spatial analysis methods to first describe, then analyse and potentially explain and predict 
patterns of zoonoses within the EU, based on available data. 
 
Carrying out a case study on spatial analysis can help: 

• perform a focussed literature review; 

• suggest the most appropriate statistical methods for analysing the geographical 
distribution of zoonotic agents; 

• address the limitations and constraints associated with spatial data and their 
interpretation; 

• identify potential additional variables to be included in the data management system not 
currently or readily available (e.g. environmental, demographic variables); and 

• put in place a workflow from data gathering to output production in which technical 
aspects will also be taken into account, such as geodatabase management, the 
development of web-based analytical tools and result sharing/visualisation capabilities. 

 
Zoonoses data are currently aggregated and reported through the EFSA data collection system 
only at country level with the exception of voluntary reporting at regional level for brucellosis 
and tuberculosis data.  The availability of the latter data is not consistent among MSs or years 
and linkage to geographic information makes use of codes that have not been standardised 
well. 
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Ways and possibilities of collecting better geographic information through the zoonoses data 
collection system shall be investigated and proposed.  In particular, the working group on the 
statistical analysis of temporal and spatial trends will investigate the possibility of collecting 
finer geographic information through the zoonoses data collection system and explore MS 
availability in providing such data.  Obtaining data at a finer scale (e.g. regional data) from 
some MSs will enable the application of more detailed spatial analysis methods and compare 
the results with those obtained performing spatial analyses at country level.  Moreover, as 
previously underlined, data on different geographic scales will allow the evaluation of how the 
scale of analysis may affect the outcome of epidemiology investigations carried out by EFSA 
and the kinds of inferences that can be drawn.  
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6. Communication of methods and results of statistical analysis 
 

..."data are not just numbers, they are numbers with a context" … 
(George Cobb and David Moore - 1997) 

 
Interpretation and clear communication are fundamental aspects of data analysis. Scientific 
information is more useful to the audience and greater success in communication is achieved 
if the information provided is relevant and easily understood.  
 
The importance of communicating results is a fundamental issue in standard documentation of 
International Institutions.  For example the World Organisation for Animal Health (OIE) 
dedicates Article 2.2.7 to define the principles of Risk Communication (OIE (2008) 
Terrestrial Animal Health Code) and the FAO in 1999 published “The application of risk 
communication to food standards and safety matters”, a report of a Joint FAO/WHO Expert 
Consultation. 
 
Usually, articles/reports contain impenetrable statistical jargon and unfamiliar mathematical 
expressions.  Epidemiologists and statisticians have a responsibility to present and 
communicate their results in ways that are transparent to everyone and have an “obligation” to 
make the data they collect useful to the public.  Terms meaningful to a statistician may be 
foreign not only to a layperson, but even for public health officials and decision-makers.  In 
too much research, understanding even the substantive conclusions of sophisticated 
quantitative models can be challenging at best and impossible at worst.  
 
Therefore, different audiences need different forms of communication; interpreting and 
disseminating information to a variety of audiences that may not be familiar with statistics is 
not an easy task.  To this end, a few useful steps are set out below as a guide to attain 
understandable and meaningful communication. 
 
 
6.1 Steps to improve communication 
 
Understandable communication can be summarised in five points: 

1. define communication objectives; 

2. identify the audience; 

3. determine key point messages; 

4. organise communication of statistical results; 

5. draw up a conclusion. 
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1. Defining communication objectives: why are results to be disseminated? 
 
Communication of epidemiological research results may include the following: 

• raise awareness about new research findings; 

• clarify a controversial issue; 

• provide information to help policy-makers make decisions; 

• redirect programme priorities; 

• seek support; and 

• introduce a new strategy. 

 

 

2. Identifying the audience 
 
Part of the communication strategy is to identify the audience (i.e. risk-managers, general 
public, consumers, risk analysts, legal analysts, etc.) and to establish the bases for 
communication, taking into consideration the characteristics of each audience.  In general, 
approaches to policy and academic audiences are different: 

• Risk-managers want to hear statements of problems and their solutions.  So focus 
should be on key messages, data linked to the audience’s concerns, recommendations 
without excessive qualifiers; and 

• Researchers want to know the theoretical framework, the methodology (for credibility) 
and results and discussion. 

 
Therefore, it is important to focus on what the audience or the readership needs to know, not 
on what the scientists know.  It is important to consider the audience’s level of technical 
knowledge, motivations, and interests.  If it is a mixed audience, the best is to identify 
common interests and needs and what it is hoped the audience will do as a result of the 
analyses which in turn will guide the lay-out of communication. 
 
 

3. Determining the key point messages 
 
People often fail to communicate effectively due to a lack of clear communication goals and 
key messages to support them.  Setting such goals and identifying support messages are 
decisions that should be made prior to the issuing of any public comment.  Identify a few 
points that you want the audience to remember, and build the communication around these 
points, tailoring them to the audience’s technical level, information needs, and interests.  
Avoid technical jargon. 
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4. Organising the communication of statistical results 
 
Content to include: 

• two sentences as an introduction to the problem, linked to audience concerns; 

• key messages (what the audience should remember); 

• objectives of the analyses; 

• a brief description of the methodology (depending on the audience); 

• major findings and implications; and 

• recommendations, if appropriate. 
 

How to display results 
 
Graphs 
A picture is indeed worth a thousand words, or a thousand data points.  Graphs can be 
extremely effective in expressing key results presenting a clear, visual message, with an 
analytical heading.  A complicated graph is difficult to decipher and at worst could be 
misleading. 
 
Tables 
The purpose of a table is to summarise and present in a concise, well-organised way 
information that cannot be presented simply in the text.  Tables should be readable and 
understandable without consulting the text.  The title of a table should communicate what is 
being presented, how variables are classified, when and where data were obtained.  
 
Maps 
Well-designed maps can be used to illustrate differences or similarities across geographical 
areas and often clarify local or regional patterns, which may be hidden within tables or charts. 
Maps are a rapidly expanding area of data presentation, with methods of geographic analysis 
and presentation becoming more accessible and easier to use. 
 
Producing statistical maps can be a simple process.  The audience should be focussed on so 
that the map produced is easy to understand. 
 
 

5. Draw up a conclusion 
 
Design an effective conclusion: what should the audience remember? 
 
The audience should be informed of the possible consequences of taking or not taking an 
action on a particular issue. 
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6.2 Communication within EFSA’s mission 
 
Risk communication is one of the three components of risk analysis, together with risk 
assessment and risk management.  According to Regulation 178/2002, which defines EFSA’s 
mission and activities, communication is one of the Authority’s main tasks.  In addition to the 
communication of scientific findings to the public, EFSA is responsible for communicating 
effectively with the European Commission, MSs, and other institutions that use EFSA’s 
advice to make decisions in the field of food safety and, more in general, for the protection of 
public health.  
 
Sophisticated statistical techniques are often employed in data analyses carried out by EFSA’s 
Unit on zoonoses.  These techniques are necessary to take into account the complexity of 
sampling procedures which are, in turn, associated with complex epidemiological and field 
situations. Results of the analyses should, however, be communicated to risk-managers and 
public health officials in a clear and univocal fashion.  Specifically, key issues which justify 
the adoption of complex methods must be clearly explained.  
 
The application of weights when estimating the frequency of zoonotic agents in animals and 
food, and in the analysis of temporal and spatial trends, is an example of a statistical 
technique which is a prerequisite for the validity of results but that requires an effort in 
communication.  In fact, weighting (to account for disproportionate stratified sampling, see 
sections on statistics) often produces parameter estimates which are different from the 
(biased) estimates which would be obtained without the application of weights.  These 
differences might generate confusion and need careful explanation. 
 
In the following example, an attempt is made to present the need of weighting for the 
zoonoses dataset when estimating prevalence at EU level.  The objective is the acceptance of 
results by public health officials and decision-makers following the clear understanding of 
theoretical and practical support for the application of specific statistical techniques. 
 
In a graphical representation (Figure 3), two squares can refer to geographic areas or different 
types (strata) of epidemiological units.  The units (for example, holdings where animals are 
raised) are represented as points which, in turn, are assigned a colour based upon the value of 
a binary variable, such as presence or absence of a zoonotic agent: white for negatives or 
uninfected, red for positives or infected (cases).  Therefore, in this simulation, the real status 
of the total, target population is known.  Consequently, when estimating prevalence of 
infection though the analysis of a sample, the biased results of disproportionate stratified 
sampling can be demonstrated, and the application of weights, in order to reconstruct the 
composition of the target population in the sample, is clearly justified.  The weighted 
prevalence in the sample is obtained through simple calculation, and it is shown to be an 
unbiased, valid estimate of the prevalence in the target population.  For simplicity, no random 
error is included in this simulation.  
 
If there are two different strata with the following characteristics: 

Stratum 1: Population (N1) =100 holdings, cases (s1) = 10, prevalence (p1) = 10% 
Stratum 2: Population (N2) = 500, cases (s2) = 125, prevalence (p2) = 25% 

If the two strata are summed up the real situation of the target population is obtained, ie: 
Total: Population (N) = 600, cases (s) = 135, prevalence (p) = 22.5% 
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Figure 3: Representation of two strata of epidemiological units.  Red points represent 

units that are positive for infection by zoonotic agents.  White points 
represent negative units 

 
 
If during sampling (Figure 4) the same number of units were selected from both strata: 100 
units were tested in stratum 1 (corresponding to the entire population for stratum 1), ten of 
which resulted as positive, and 100 units were tested in stratum 2 (corresponding to 20% of 
the population of stratum 2) of which 25 were positive.  
 
 

 
Figure 4: Disproportionate stratified sampling from two strata: 100 units are sampled 

from each stratum in spite of different population sizes (stratum 1, N = 100; 
stratum 2, N = 500)  

 Stratum 2: 
Popul. = 500; n cases = 125 

Prevalence = 25% Stratum 1: 
Popul. = 100; n cases = 10 

Prevalence = 10%  

n=200  

Stratum 2: 
Popul. = 500; n cases = 125 

Prevalence = 25% Stratum 1: 
Popul. = 100; n cases = 10 

Prevalence = 10% 

Overall prevalence = 22.5% 
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The sample is, therefore constituted by 200 units.  Raw prevalence of infection can be 
obtained as follows: 
 

Stratum Sample Positive* Population 
1 100 10 100 
2 100 25 500 

* expected number of positive units in the absence of random error. 
 
Through the calculation (10+25)/(100+100) = 35/200 = 0.175 is obtained as an estimate.  This 
is lower than the known population prevalence and it is, therefore biased due to systematic 
error.  In fact, stratum 1, characterised as a relatively low prevalence, is over-represented in 
the sample, where it constitutes 50% of the units, as compared with the target population, 
where it constitutes 16.7% of all units.  
 
 
6.3 Application of weights to obtain a valid prevalence estimate for the population 
 
Each observation is applied a weight corresponding to the reciprocal of the sampling fraction 
in the two strata, calculated as the ratio between sample size and population size:  
 
Sampling fraction stratum 1: sample (n1) /population (N1) = 100/100 = 1 
Sampling fraction stratum 2: sample (n2)/population(N2) = 100/500 = 0.20 
 
Weight stratum 1: W1 = 1/1 
Weight stratum 2: W2 = 1/0.2 = 5 
 
The weighted, population prevalence estimated can, therefore, be obtained based upon the 
following values:  
 

Stratum Sample Positive Population wt NposWt
1 100 10 100 1 10 
2 100 25 500 5 125 

 
The weighted prevalence estimate is, therefore, obtained as: 
(10*1+25*5)/(100*1+100*5) = 135/600 = 22.5% 
that, in the absence of random error, exactly corresponds to the true population prevalence. 
 
The same simulation could be extended to explain the subsequent logical process of 
standardisation of weights, whose objective is to avoid the inflation of sample size (see 
example).  The proposed style of presentation, including graphics, and step by step 
calculations, should be used when epidemiologists and statisticians are presenting a plan of 
statistical analysis or its results to public health professionals and decision-makers.  In this 
way, decisions in the analysis can be discussed in a transparent way, in light of both scientific 
and policy related implications.  Moreover, through clear communication, epidemiologists 
can explicitly acknowledge potential biases and limitation of their work, which are sometimes 
intrinsic to the study design and impossible to adjust (Bhopal, 2008).  In this way, survey 
results on large and complex populations can be taken into proper account in public health 
decision-making processes. 
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GENERAL CONCLUSIONS 
 
The study of temporal and spatial trends of zoonotic agents in animals and food is a major 
objective of the statistical analyses that are carried out by EFSA within the framework of the 
CSR. 
 

• It is particularly important that these analyses are carried out at EU level, since MSs 
belong to the same geographic area, share a common market, and are subject to 
common policies in disease control and prevention.  At the same time, major 
differences in the natural environment and in management exist among EU MSs, and 
appropriate statistical analyses can be used to take this into account. 

 
• In the analysis of trends in the frequency of zoonotic agents in animals and food in the 

EU, the first general question to be asked is whether observed changes in frequency 
are real or an artefact (Bhopal, 2008).  In synthesis, trends may be affected by random 
error associated with small sample size.  However, systematic error yielding biased 
results of the analysis is most insidious in many aspects.  Changes in data collection 
methods or in the laboratory diagnosis across MSs, or within the same MS in different 
years, for example, would lead to artefact trends.  The application of statistical 
methods can provide confidence intervals as measures of random error of parameter 
estimates.  Moreover, the characteristics of the sampling design, when is it known, can 
be taken into account in the analysis to reduce the risk of systematic error. 

 
• The level of harmonisation of zoonoses data collection is still to be improved and, in 

certain cases, not enough information is available on such a key issue. It is, however, 
reasonable to believe that, for certain animal categories, the data collection process is 
harmonised or, at least, well-known in the different MSs.  Food data collection is 
probably where more work is required to improve harmonisation. 

 
• Statistical analyses of temporal trends were carried out, for the first time, for the CSR 

on data collected from 2004 to 2006.  As data collection may be not fully harmonised 
throughout different MSs, this source of heterogeneity should be recognised by the 
statistical models.  As data over years from the same MS are also expected to be 
correlated (being more similar as they refer to the same country with its country 
specific latent characteristics, one of which is the data collection procedure), a 
repeated measures model with MS as subject-indicator was used for the trend analysis.  
Therefore, the analysis was valid as long as harmonisation was constant inside MSs, 
across years, whereas the potential effects of between MS harmonisation problems 
were reduced.  

 
• Another important characteristic of the data was that different MSs provided data 

corresponding to different fractions of their populations, therefore, the composition of 
the sample, in terms of MS contributions, was different from the MS composition of 
the EU population.  Statistical techniques were consequently used to reconstruct the 
EU population in the analysed sample, to reduce the risk of biased results.  This was 
achieved through the use of weights corresponding to the reciprocal of the sampling 
fraction.  The validity of such weights is greatly affected by the availability of reliable 
population estimates for epidemiological units. 
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• In conclusion, statistical analyses carried out on temporal trends for the 2006 CSR 
were generally valid.  Major recommendations for the improvement of the analysis of 
temporal and spatial trends are relative to the availability of more detailed information 
on data collection processes to favour interpretation of results or to use appropriate 
statistical methods. 

 
• Information on potential risk factors would be used to adjust confounding when 

estimating trends.  Specifically, data on season of data collection would allow 
adjustment for potential confounding due to seasonal effects on certain zoonotic 
agents.  Moreover, the availability of data for geographic areas within each MS, if not 
geographic coordinates of holdings, would allow more refined spatial and spatial 
temporal analysis.  Objectives would be the detection of changing temporal trends at 
different locations. 

 
• In the part II report of the activities of this working group, the use of different 

software and statistical packages will be compared in the analysis of temporal trends.  
Further developments in statistical analysis will include a description and examples of 
random effect models and Bayesian models to obtain MS-specific trend analyses.  A 
specific section of the part II report will be devoted to the development of spatial 
analysis with examples of application to data from certain MSs. 
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APPENDIX A: WORKED EXAMPLES OF THE SAS PROCEDURE APPLICATION 
 
 
In order to carry out a thorough review of the analyses of time trends which were carried out 
on data for 2006, examples are presented of possible approaches to the analysis on a selected 
data set on Salmonella spp. in flocks of laying hens (for details on data collection, see the 
2006 CSR), by using mostly SAS SURVEYLOGISTIC and GENMOD procedures.  
Parameter estimates obtained by these approaches, including the one that was actually used 
for the 2006 data, are compared and discussed. 
 
Selected data 
 
Data on Salmonella spp. in flocks of laying hens are in binomial format, the number of 
positive flocks (pos) out of the number of tested flocks (N) is available for each MS reporting 
data, and for each year from 2004 to 2006.  Names of the nine reporting MSs were replaced 
by letters (A to I).  The number of laying hens that were raised in each country in 2006 is used 
as the sampled population (pop).  Weight (wt) is calculated by year and by MS as the ratio 
pop/N - the reciprocal of the sampling fraction.  The following data step is used to create the 
data set. 
 

 

data ms; 
input id ms $ year N pos pop; 
wt = pop/N; 
datalines; 
1 A 2004 2649 41 5450000 
2 B 2004 1009 6 3099504 
3 C 2004 815 1 3103333 
4 D 2004 4916 112 36157100 
5 E 2004 355 3 1988500 
6 F 2004 3148 117 41641960 
7 G 2004 219 10 2709000 
8 H 2004 167 4 1119666 
9 I 2004 909 2 5065260 
10 A 2005 4735 66 5450000 
11 B 2005 913 13 3099504 
12 C 2005 817 1 3103333 
13 D 2005 5331 166 36157100 
14 E 2005 217 6 1988500 
15 F 2005 4117 145 41641960 
16 G 2005 309 41 2709000 
17 H 2005 130 8 1119666 
18 I 2005 1109 1 5065260 
19 A 2006 4359 88 5450000 
20 B 2006 854 3 3099504 
21 C 2006 749  0 3103333 
22 D 2006 2764 39 36157100 
23 E 2006 340 1 1988500 
24 F 2006 5008 100 41641960 
25 G 2006 1298 29 2709000 
26 H 2006 205  3 1119666 
27 I 2006 913 1 5065260 
; 
run; 
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Example 1.  Ordinary logistic regression 
 
In the first example, ordinary logistic regressions (OLR), ignoring any of the design 
characteristics, were fitted using first SURVEYLOGISTIC and then GENMOD.  
 

 
 
PROC SURVEYLOGISTIC automatically implements the binomial distribution and the logit 
link, whereas in PROC GENMOD, distribution and link must be specified since this 
procedure can be used to fit different generalised linear models.  In both procedures, binomial 
frequency counts are used and, in the SAS manual this format is referred to as event / trials 
format (SAS, 2009).  Results of the analysis are shown in Table 1.  
 

Table 1. Parameter estimates obtained by ordinary logistic regression analysis of the 
effect of year of sampling on the prevalence of Salmonella spp. infection in 
flocks of laying hens, in nine EU MSs, from 2004 to 2006 

 
Parameter estimate (standard error) Procedure Intercept Year 

SURVEYLOGISTIC  252.9 (75.3)  -0.128 (0.038) 
GENMOD  252.9 (80.3)  -0.128 (0.040) 

 
Point estimates of regression parameters which were obtained by using the two procedures are 
exactly the same, whereas some minor differences are observed in the standard errors, which 
can be explained by different estimation methods.  In fact, in SURVEYLOGISTIC, the 
design-based variances of parameters are estimated using a Taylor series expansion 
approximation (SAS, 2009).  In GENMOD, on the other hand, the maximum likelihood 
theory is used, and asymptotic standard errors can be derived from the second derivatives of 
the likelihood function.   
 

proc surveylogistic data=ms; 
 model pos/N = year; 
run; 
 
proc genmod data=ms; 
 model pos/N = year / dist=binomial link=logit; 
run; 
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Example 2.  Sampling from finite populations 
 
In a survey, sampling can be carried out from a finite population (as opposed to an infinite or 
very large population).  The consequence of a finite population size is that parameters can be 
estimated with a relatively high degree of precision, as expressed by reduced standard errors 
of estimates.  No finite population correction was taken into account in the 2006 analysis.  
Finite population correction can only be incorporated in a design-based approach, as available 
in SURVEYLOGISTIC.  This design feature is illustrated in this example by hypothetically 
assuming that 25%, 50% and 100% of the population were sampled.  Moreover, in the 
following SAS statement, an input data set was created in which the _TOTAL_ variable 
corresponds to the finite population size. 
 

 
 

data population; 
input id _TOTAL_; 
datalines; 
1 5450000 
2 3099504 
3 3103333 
4 36157100 
5 1988500 
6 41641960 
7 2709000 
8 1119666 
9 5065260 
10 5450000 
11 3099504 
12 3103333 
13 36157100 
14 1988500 
15 41641960 
16 2709000 
17 1119666 
18 5065260 
19 5450000 
20 3099504 
21 3103333 
22 36157100 
23 1988500 
24 41641960 
25 2709000 
26 1119666 
27 5065260 
; 
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In the following SAS statements, r= indicates the sampling rate, whereas total= indicates the 
input data set (population) where the population size is expressed as _TOTAL_.  Results are 
shown in Table 2. 
 

 
 
 

Table 2. Parameter estimates obtained by logistic regression analysis of the effect of 
year of sampling on the prevalence of Salmonella spp. infection in flocks of 
laying hens, in nine EU MSs, from 2004 to 2006.  Varying sampling fractions-
rates (from 25% to 100%) were simulated. Moreover, finite population size 
was set equal to the laying hen population size for each MS (Sampling from 
_TOTAL_) 

 
Parameter estimate (standard error) Sampling rate Intercept Year 

25%   252.9 (65.2)  -0.128 (0.033) 
50%   252.9 (53.2)  -0.128 (0.027) 
100%  252.9 (0.0)  -0.128 (0.000) 
Sampling from _TOTAL_  252.9 (74.9)  -0.128 (0.037) 

 
Parameter estimates are not affected by the sampling fraction (Table 2), whereas, as expected, 
the standard error is smaller when larger fractions of the populations are sampled.  When the 
sample covers the full population (sampling fraction = 100%), the estimate equals the 
population value with standard error equal to zero.  When the finite population was set equal 
to the laying hen population for each MS (sampling from _TOTAL_) the finite population 
correction has only a small effect on standard errors, since the sample is only a limited 
fraction of the full population (the standard error is only slightly smaller than in ordinary 
logistic regression, see Table 1).  This last result would probably have been different if the 
flock population would have been used, instead.  
 

proc surveylogistic data=ms r=25; 
title ‘Sampling 25% of the population’; 
 model pos/N = year; 
run; 
 
proc surveylogistic data=ms r=50; 
title ‘Sampling 50% of the population’; 
 model pos/N = year; 
run; 
 
proc surveylogistic data=ms r=100; 
title ‘Sampling 100% of the population’; 
 model pos/N = year; 
run; 
 
proc surveylogistic data=ms total=population;  
title ‘Sampling from _TOTAL_‘; 
 model pos/N = year; 
run; 



  

 
Statistical analysis of temporal and spatial trends 

of zoonotic agents in animals and food 
 

 

The EFSA Journal (2009) 253, 52-77 

 

Example 3.  Accounting for disproportionate sampling 
 
In the following analyses, some of the design characteristics will be incorported when fitting 
the model, starting with accounting for the disproportionate sampling scheme, using weights 
to correct estimates.  First SURVEYLOGISTIC will be used and then the GENMOD 
procedure. 

 
 
In the above codes, the weight statement identifies a numerical variable (wt) which is used as 
the sampling weight for each observation in the data set. 
 

Table 3. Parameter estimates obtained by weighted logistic regression analysis of the 
effect of year of sampling on the prevalence of Salmonella spp. infection in 
flocks of laying hens, in nine EU MSs, from 2004 to 2006.  Sampling weights 
were calculated as the reciprocals of the sampling fractions: laying hen 
population divided by number of tested laying hen flocks 

 
Parameter estimate (standard error) Procedure Intercept Year 

SURVEYLOGISTIC  460.1 (84.2)  -0.231 (0.042) 
GENMOD  460.2   (0.94)  -0.231 (0.0005) 

 
As in example 1, SURVEYLOGISTIC and GENMOD procedures produce exactly the same 
point estimates.  These are different from the estimates from Example 1 as they are now 
corrected for disproportionate sampling across the countries through the weights.  The 
standard errors reported by SURVEYLOGISTIC are similar to those of Example 1, but 
procedure GENMOD seems to produce unrealistically small standard errors.  The reason for 
this erroneous reporting is that the weights need to be standardised.  If not standardised, the 
procedure acts as if the sample size was much larger, as indicated by the output (not 
mentioned above) whereas the sum of weights should remain 27.  This can be rectified by 
standardising the weight through the following SAS code. 
 

 

data msb; 
 set ms; 
 wts=wt*27/165485.25; 
run; 
 
proc genmod data=msb; 
 model pos/N = year / dist=binomial link=logit; 
 weight wts; 
run; 

proc surveylogistic data=ms;  
 model pos/N = year; 
 weight wt; 
run; 
 
proc genmod data=ms; 
 model pos/N = year / dist=binomial link=logit; 
 weight wt; 
run; 
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Standardised weight for observations belonging to stratum s is obtained by the equation: 
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Where Ws = weight for stratum s (wt in the SAS statement); ∑
=

m

s
sn

1
= sum of all observations 

across all strata (27 in the example); ∑
=

m

s
sW

1

= sum of all weights across all strata (165,485.25 

in the example). 
 
Table 3 bis. Parameter estimates obtained by weighted logistic regression analysis of the 

effect of year of sampling on the prevalence of Salmonella spp. infection in 
flocks of laying hens, in nine EU MSs, from 2004 to 2006.  Sampling weights 
were calculated as the reciprocals of the sampling fractions and subsequently 
standardised 

 
Parameter estimate (standard error) Procedure Intercept Year 

GENMOD 460.2 (72.4) -0.231 (0.036) 
 
As shown in Table 3 bis, the GENMOD analysis with standardised weights leads to standard 
errors in line with (but somewhat smaller) than those reported by SURVEYLOGISTIC. 
 
 
Example 4.  Taking into account correlation among observations from the same MS 
 
In this example, it is assumed that data from the same MS over consecutive years are 
correlated, as they are expected to share common environmental, hygienic and other 
conditions.  There are several modelling approaches available to take into account non-
independence among observations, and the subsequent correlation among outcomes.  
However, this example is limited to options available in SURVEYLOGISTIC and GENMOD 
procedures.  In SURVEYLOGISTIC, the sampling design can be specified by adding the 
cluster statement.  In this case, when there are clusters, or primary sampling units (PSUs), in 
the sample design, the procedure estimates the variance from the variation among the PSUs 
(http://support.sas.com/rnd/app/da/new/dasurvey.html). 
 
The GENMOD procedure, using the repeated statement, implements GEE, where the quasi-
likelihood approach assumes only a relationship between the mean (μ) and the variance 
Var(Y), rather than a specific probability distribution for Y. It allows for departures from the 
usual assumptions, such as over-dispersion caused by correlated observations or unobserved 
explanatory variables (Agresti, 2002).  In GEE, the structure of the correlation among 
repeated observations form the same subjects (in our example, the member stated) can be 
chosen.  Here the exchangeable correlation structure is shown, which is based upon the 
assumption that correlation is the same among any two observations from the same subject, 
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regardless of the time interval separating them.  Alternatively, the autoregressive structure, 
AR(1), is based upon the assumption that correlation decreases with increasing time between 
observations. 
 

 
 

Table 4. Parameter estimates obtained by logistic regression analysis of the effect of 
year of sampling on the prevalence of Salmonella spp. infection in flocks of 
laying hens, in nine EU MSs, from 2004 to 2006.  Potential correlation among 
observations from the same MS is taken into account 

 
Parameter estimate (standard error) Procedure Intercept Year ρ 

SURVEYLOGISTIC 
cluster   252.9 (146.6)  -0.128 (0.073) − 

GENMOD, GEE Exch  301.48 (149.41)  -0.1523 (0.0745) 0.45 
GENMOD, GEE 
AR(1)   301.01 (170.14)  -0.1521 (0.0848) one year: 0.55 

two years: 0.30 

ρ = working correlation; Exch = Exchangeable correlation structure; AR(1) = first order autoregressive correlation structure. 
 
Since no weighting has been used, the point estimates are again equal to or close to those of 
Example 1 (ordinary logistic regression).  By comparing the standard errors of the estimates it 
can be observed that these are now almost doubled, as compared to Example 1.  This is a 
typical phenomenon when accounting for the non-independent nature of the data, as the effect 
of clustered or correlated data can be interpreted as an implicit sample size reduction (a 
reduction in effective independent units of information).  Ignoring non-independence 
typically leads to overly optimistic standard errors, and consequently to erroneous and 
misleading inference.  Empirical corrected standard error estimates, which are calculated 
based on the working correlation, are reported in Table 4. 
 
It is worth noting that also the point estimates change slightly in the GEE approach, compared 
with the ordinary logistic regression, not taking into account non-independence of 
observations (Example 1).  This is a result of the formulation of the GEE, in which the 
estimation of the correlation parameter also affects the estimation of the probability 
parameter. 
 

proc surveylogistic data=ms;  
 cluster MS; 
 model pos/N = year; 
run; 
 
proc genmod data=ms; 
 class MS; 
 model pos/N = year / dist=binomial link=logit; 
 REPEATED SUBJECT=MS / TYPE=EXCH; 
run; 
 
proc genmod data=ms; 
 class MS; 
 model pos/N = year / dist=binomial link=logit; 
 REPEATED SUBJECT=MS / TYPE=AR(1); 
run; 
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The GENMOD procedure allows different working correlation structures to be specified. 
Here two plausible choices have been shown and the results obtained for each of them.  
Similar results were obtained for both working correlation assumptions.  
 
Below are set out a description of analyses taking both complications (weighting together 
with intra-MS) correlation, into account. 
 
 
Example 5.  Taking simultaneously into account disproportionate sampling (with 
weighting) and non-independence of observations 
 
Here, both complications of data characteristics, weighting and clustering, are combined in 
both SAS procedures. 
 

 
 

Table 5. Parameter estimates obtained by logistic regression analysis of the effect of 
year of sampling on the prevalence of Salmonella spp. infection in flocks of 
laying hens, in nine EU MSs, from 2004 to 2006.  Disproportionate sampling 
and potential correlation among observations from the same MS are taken 
into account 

 
Parameter estimate (standard error) Procedure Intercept Year ρ 

SURVEYLOGISTIC cluster & 
weight  460.1 (76.9)  -0.230 (0.038) − 

GENMOD Exch weight   459.9 (72.5)  -0.230 (0.036) 0.36 

GENMOD AR(1)   449.21 (78.3)  -0.226 (0.039) one year: 0.39 
two years: 0.15 

ρ = working correlation; Exch = Exchangeable correlation structure; AR(1) = first order autoregressive correlation structure. 

proc surveylogistic data=ms;  
 cluster MS;   
 model pos/N = year; 

weight wt; 
run; 
 
proc genmod data=ms; 

class MS; 
model pos/N = year / dist=binomial link=logit; 
weight wt; 
REPEATED SUBJECT=MS / TYPE=EXCH; 

run; 
 
proc genmod data=ms; 
 class MS; 
 model pos/N = year / dist=binomial link=logit; 
 weight wt; 
 REPEATED SUBJECT=MS / TYPE=AR(1); 
run; 
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The analysis of SURVEYLOGISTIC and GENMOD are now strikingly similar, although they 
originate from different paradigms (design-based SURVEYLOGISTIC versus model-based 
GENMOD).  The point estimates changed again through the weighting to the same value as in 
Example 3 for SURVEYLOGISTIC or to a value very close to GENMOD.  When looking at 
the standard errors of the year parameter, the effect is observed of combining weighting and 
clustering which leads to standard errors not far from their values without clustering 
(see Table 3 for SURVEYLOGISTIC, and Table 3 bis for GENMOD with standardised 
weights).  Therefore, in this data, after the inclusion of weights, taking into account non-
independence does not affect standard errors of estimates.  This unexpected observation might 
be due to the fact that varying weights (possibly associated with varying sample sizes) may 
affect correlation among observations from the same MS. 
 
Standardisation of weights in GENMOD is no longer necessary since it leads to exactly the 
same results.  The reason is that the computation of standard errors for GEE parameter 
estimates implicitly standardised weights.  Also here several working correlation assumptions 
have been used.  The results obtained point again to the fact that model fits are similar. 
 
 
Example 6.  MSs as strata 
 
Another feature of SURVEYLOGISTIC is that stratification can be incorporated in the 
model.  If the sample design has stratification at multiple stages, only the first-stage strata in 
the STRATA statement can be identified.  The analysis can be done also using MS as stratum, 
first without using weights, and then incorporating the disproportionate sampling into the 
model.  When the design is stratified, the procedures pool stratum variance estimates to 
compute the overall SAS variance estimate. 
 

 

proc surveylogistic data=ms;  
 model pos/N = year; 
 strata MS; 
run; 
 
proc surveylogistic data=ms; 
 model pos/N = year; 
 strata MS; 
 weight wt; 
run; 
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Table 6. Parameter estimates obtained by logistic regression analysis of the effect of 
year of sampling on the prevalence of Salmonella spp. infection in flocks of 
laying hens, in nine EU MSs, from 2004 to 2006.  MSs are considered as 
strata.  Moreover, disproportionate sampling and potential correlation 
among observations from the same MS are alternatively taken into account 

 
Parameter estimate (standard error) Procedure Intercept Year 

SURVEYLOGISTIC strata   252.9 (75.3)  -0.1281 (0.0375) 
SURVEYLOGISTIC strata & weight  460.1 (84.2)  -0.2313 (0.042) 

 
SURVEYLOGISTIC with strata produces the same parameter estimates and standard errors 
as in Example 1 (ordinary logistic regression), while when weights are used, then the results 
are the same as the one obtained from Example 3 (inclusion of weight, without cluster 
statement).  Therefore, in the absence of weights, the strata MS statement yields smaller 
standard errors than the cluster MS statement.  The strata statement allows getting strata 
specific information and can be used to incorporate finite strata population corrections (which 
have no effect in our example).   
 
 
Example 7.  Accounting for over-dispersion of binomial counts through the SCALE 
parameter (GENMOD) 
 
This example is limited to PROC GENMOD and deals with the general concept of “over-
dispersion” as a greater than expected variability of binomial counts.  Over-dispersion can be 
measured by the ratio of  the deviance or Pearson goodness-of-fit measures, expected to be 
about one if model assumptions, being independence and constant probability, are met, and 
(much) larger than one if such assumptions are not met.  In GENMOD, using the scale=D or 
the scale=P statement leads to the computation of corrected standard errors to deal with over-
dispersion.  This is another approach to take into account non-independence of observations 
since it can lead to over-dispersion of binomial counts.  Again, as with GEE, this approach 
does not require the weights to be standardised, as the correction of standard errors includes 
an implicit standardisation. 
 

 
 

proc genmod data=ms; 
 class MS; 
 model pos/N = year / dist=binomial link=logit scale=D; 
 weight wt; 
run; 
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Table 7. Parameter estimates obtained by logistic regression analysis of the effect of 
year of sampling on the prevalence of Salmonella spp. infection in flocks of 
laying hens, in nine EU MSs, from 2004 to 2006.  Over-dispersion of binomial 
counts is taken into account 

 
Parameter estimate (standard error)  Procedure 

Intercept Year Scale 
GENMOD scale=D; 
Weight;  460.15 (293.8)  -0.231 (0.147) 317.7 

 
The output shows the same point estimates as in earlier GENMOD analyses (including 
weights).  The standard errors are however larger than any other former analysis.  This is a 
typical phenomenon as this approach intends to correct for any source of over-disperion in a 
conservative way.  
 
 
Example 8.  Dummy coding of year effect 
 
In this example, year is not included in the model as a continuous predictor (assuming linear 
effect) but as a categorical variable.  The year 2006 is used as the reference.  This is 
automatically accomplished in GENMOD after including year in the class statement.  In 
SURVEYLOGISTIC, two dummy variables were created representing years 2004 and 2005, 
meaning that these variables take the value ‘1’ if year is equal to one of them, and are equal to 
‘0’ otherwise.  It is in, fact, important to recognise that parameterisation of the models in 
SURVEYLOGISTIC and GENMOD are different.  Here only the model that accounts for the 
cluster will be focussed on as well as the disproportionate sampling. 
 

 
 

proc surveylogistic data=ms; 
 cluster MS; 
 model pos/N = year1 year2; 
 weight wt; 
run; 
 
proc genmod data=ms; 
 class MS year; 
 model pos/N = year / dist=binomial link=logit; 
 weight wt; 
 REPEATED SUBJECT=MS / TYPE=EXCH COVB CORRW MODELSE; 
run; 
 
proc genmod data=ms; 
 class MS year; 
 model pos/N = year / dist=binomial link=logit; 
 weight wt; 

REPEATED SUBJECT=MS / TYPE=AR(1) COVB CORRW MODELSE; 
run; 
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Table 8. Parameter estimates obtained by logistic regression analysis of year of 
sampling on the prevalence of Salmonella spp. infection in flocks of laying 
hens, in nine EU MSs, from 2004 to 2006.  The non-linear effect of year is 
analysed after dummy coding 

 
Parameter estimate (standard error) Procedure Intercept 2004 vs 2006 2005 vs 2006 ρ 

SURVEYLOGISTIC 
Cluster & Weight  -4.1541 (0.1526)  0.5494 (0.07)  0.7425 (0.13) − 

GENMOD Exch 
weight   -4.1541 (0.1439)  0.5494 (0.07)  0.7425 (0.12) 0.57 

GENMOD AR(1)   -4.1541 (0.1439)  0.5494 (0.07)  0.7425 (0.12) one year: 0.66 
two years: 0.43 

ρ = working correlation; Exch = Exchangeable correlation structure; AR(1) = first order autoregressive correlation structure. 

 
 
In Table 8, the parameter comparing the risk of Salmonella spp. in laying hens in 2005 and in 
2006 is greater than the parameter for 2004 vs 2006, indicating that the effect of year on 
Salmonella spp. was not linear.  Therefore, these results indicate that the inclusion of year in 
the model, as a numerical variable is not ideal.  On the other hand, the main interest of the 
2006 analysis was on a linear trend at EU level, rather than on a non-linear trend.  The results 
obtained from SURVEYLOGISTIC and GENMOD procedures are comparable.  The choices 
of the working correlation structure do not have any impact on the empirical estimates.  Little 
changes were observed for the model-based outputs. 
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APPENDIX B: STATISTICAL DETAILS 
 
 
In the case of a laboratory test detecting infection by a zoonotic agent, if the test is carried out  
only on a single unit, the outcome variable will assume the value of one in the case of a 
positive test result, while it will correspond to zero in the case of a negative test.  The purpose 
of this variable is to observe if after drawing a sample of n=1 unit from a finite population the 
presence/absence of the characteristic in which interest is shown can be detected (for example 
an infection).  In a formal way: 
 

⎪⎩

⎪
⎨
⎧

=
infected-noniskanimalif0

infectediskanimalif1
ky  

 
ky is well known as the Bernoulli random variable (r.v.) with probability of success equal to: 

ππ === kkyP )1(  and defined by : )(πBernoulliyk ≈ .  The probability  is called 
prevalence of infection, and could be either constant  or dependent on the specific 
characteristics of the unit (age, weight, etc.) as well as more global characteristics (such as 
environmental conditions, hygienic conditions, farm or flock conditions). 
 
If the experiment is performed on the entirety of the N units of the finite population, the 
population results will be divided into two separated and complementary classes: 
 
• the first one is D which includes those units with modality 1 (for instance infected 

animals) and is equal to ∑
k=1

N

yk =ND  

• while the second one is D  including instead those units with modality 0 and equals:  
DD NNN −=  (for example non-infected animals). 

 
Therefore DN  and DN  represent the absolute frequency of the animals, respectively infected 
and not infected.  It will follow that the proportion or prevalence of infected units among the 
population is NN D=π  coinciding with the probability of extracting from the population a 
unit possessing the characteristic under observation while the proportion of non-infected units 
is: 
 

NNNN DD =−=− 11 π . 
 
In the case of extraction from the finite population of a simple random sample of n units with 
replacement (srswr) to estimate π , in the sample y infected units are noticed and n-y non-
infected; y represents the number of successes out of n independent trials with the same 
probability.  In a sample of n units the variable can assume the values y= 0,1,2,…,n with the 

probability yny

y
n

yP −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= )1()( ππ .  Considering the way the experiment has been built 

y represents the sum of n independent and equally distributed Bernoulli r.v. and it is well 
known as the Binomial r.v.: );( πnBiy ≈ .  The correct estimation for π  is nyp = ; when the  
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sample changes, according to the design-based formulation, p changes and describes the 
Sample Proportion r.v. which is obtained multiplying the Binomial times n1 .  The variance 
of this r.v. is estimated by the quantity )1()1()( −−= npppv . 
 
In case of a simple random sample without replacement (srs) the estimation for π is still 

nyp =  while the estimation for the variance is
1

)1(1)(
−
−

−=
n

ppfpvwr , where Nnf =  is 

the finite population correction.  The srswr can be considered a sample drawn from an infinite 
population while the srs is a sample drawn from a finite population.  In general, in real cases, 
populations are finite and there is no interest in detecting the same unit more than once, 
therefore the sample srs is the one normally used.  Moreover when the population is large and 
the sample size is very small, compared to the population, the fraction of survey tends to zero 
and the variance for the estimators in the two designs tends to be the same; so treating finite 
population as infinite population is a very reasonable mathematical simplification. 
 
As a consequence of the Central Limit Theorem the Sample Proportion r.v. is approximately 
distributed normally; therefore the confidence interval forπ  can be defined for a confidence 
level of )1( α− : 
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where n21  is the correction it should be brought to improve the approximation of a discrete 
variable as a continuous variable and 2/αz  is the percentile of order 2/α  of the Standard 
Normal distribution.  For small (<0.1) or large (>0.9) values of proportions, the exact 
binomial confidence interval is more appropriate.  
 
Analysis of binary dependence variable  
It may be interesting to analyse the dependence of the study variable from one or more 
“covariates” (explanatory variables).  When ky  is a Bernoulli r.v. with success probability kπ  
(e.g. the animal is infected), the dependence of variable ky  on a covariate is modelled 
through logistic regression.  Let  denote the value of such a covariate for subject  (for 
simplicity only one covariate is assumed). 
 
The logistic function or logit is  
 

k
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k
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where the ratio between success probability and failure probability 
k

k

π
π
−1

 is called odds and 
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=  is the probability that ky =1 given the model; in other words it is the 

probability that the animal is infected conditionally to the covariate .  The logit link has a 
major advantage that it leads to the interpretation of a log odds ratio for the regression 
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slope , which allows the method to be applied for retrospectively collected case-control 
data, and for cross-sectional surveys 
 
Assuming the model is correctly specified (meaning that it approximates the truth 
satisfactorily), the regression coefficients can be estimated by the simple random sample 

 through the maximum likelihood function (see e.g. McCullagh and Nelder 
1989, Agresti 2002). 
 
Note that in many cases, subjects are sharing the same covariate information, such as herd 
characteristics.  In case the above Bernoulli model is formulated with all information 
aggregated at this higher level of structure, it can be equivalently formulated as a “binomial” 
model (see below).  
 
 
Cluster and stratified sampling 
 
Often the data structure is hierarchical and as a consequence, data are correlated within 
natural clusters.  Let   be the probability for a study object to be positive in country i, and let 

 be the number of study objects in cluster j from country i.  The starting point for inference 
on prevalence is the binomial distribution (model) for the number of positive  in cluster j in 
country i: 
 

 
 
In a case of a fully random sample the  could be combined in a straightforward way to 
estimate the prevalence for country i.  Typical complications however are the following: 

• the sample is not a random sample, but typically the sample is the result of a complex 
survey design, such as stratified sampling; 

• the independence assumption on the binomial distribution is violated because outcomes 
from the same cluster are expected to be more alike (correlated) as compared to 
outcomes from different clusters (hierarchical correlation structure); 

• the constant probability assumption is violated because samples, even from the same 
cluster or even from the same sampling unit, might have different probabilities e.g. to be 
infected (heterogeneity of probability). 
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APPENDIX C:  ILLUSTRATED EXAMPLE OF THE BAYESIAN APPROACH TO STATISTICAL 
ANALYSIS 

 
 
Hereafter is reported an illustrative example based on the Zoonoses Report data from 2006.  
Prevalence of Salmonella spp. in flocks of laying hens was available for only 11 countries in 
the EU in the following format: per country, the total number of flocks tested, total number of 
positives and the population sizes for three consecutive years (2004, 2005 and 2006).  In 
addition, information may be available for all 27 countries, such as population sizes.  Such 
additional information, usually discarded, can be of value and easily incorporated within a 
Bayesian framework, as shown below. 
 
The model chosen is a binomial/logistic random effect model.  For a given MS, the number of 
positive flocks (n.positives) is assumed to be a binomial draw from the total number tested 
(n.tested) with prevalence P.  Total population sizes (n.tot) are seen to be large enough to 
validate this assumption. 
 

( ) ( )[ ]MSMSMS PtestednBinpositivesn ,.~. )(  
 
Then, prevalence probabilities need to be converted into the logistic scale.  To describe the 
time effect, a logistic regression model is assumed, with random effects on the parameters: 
 

Logit [P(MS)] =  A(MS) + B(MS)*year 
 
Random effects describe here inter-country variability, to account for the fact that 16 MSs out 
of the 27 are missing.  Random effects are assumed to be normal but any other relevant choice 
could be made without much incidence on implementation. 
 
At MS level, the parameter B stands for the trend parameter in the logit scale. A similar 
parameter needs to be also defined at EU level, accounting for the respective weights of each 
country proportional to their population sizes. For this purpose, and for the sake of this short 
example, one could make the following approximation, valid for small prevalence: 
 

( )( )yearBPP MS
year
MSMS *10

)()( +≈ =  
 
This allows a simple expression for the time slope at EU level: 
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The purpose of statistical evaluation is now to assess how likely it is that this slope is 
negative, and to estimate its size. 
 
The Bayesian evaluation of this model is made using WinBUGS 1.4, with standard non-
informative priors.  The code is reported at the end of this appendix. 
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The average (posterior mean) yearly decrease in prevalence was estimated to be about -18% 
at EU level, with a relatively wide 95%-confidence (credibility) interval [-27%; -10%].  The 
posterior distribution for the EU slope parameter is represented in Figure 5 below. 
 
 

slope sample: 14997
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Figure 5: WinBUGS output showing posterior distribution of the average slope, using a 

random-effect model, without accounting for the population sizes of countries 
with missing prevalence 

 
 
The posterior probability of the slope being negative was greater than 99%, hence showing a 
high level of confidence in negative trend. Subsequently, the same model was fitted on the 
27 MSs, using the available population sizes for each of them. The procedure now accounts 
for the relative weights (total population sizes) of all the 27 countries and the Bayesian 
scheme propagates uncertainty in a sound manner.  Within this set-up, the EU slope was now 
estimated to be -22% (see Figure 6).  But as expected, uncertainty of this estimate has now 
increased, as shown by Figure 6.  The 95%-credibility interval is now estimated to be 
[-53%,+6%] and the posterior probability for the EU slope being negative was about 95.3% so 
just above the “classical level” of statistical significance (5%). 
 
 

slope sample: 3000
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Figure 6: WinBUGS output showing posterior distribution of the average slope, using a 

random-effect model, when accounting for the population sizes of countries 
with missing prevalence 

 
 
It is interesting to notice that an attempt to reproduce the results using the same model with 
SAS proc GLIMMIX (with maximum likelihood inference) was unsuccessful (results not 
shown), even in simple cases without accounting for weights for missing countries.  However, 
the same model may be coded in SAS using newly added Bayesian features.  As a matter of 
fact, SAS 9.2 now offers a Bayesian module in proc GENMOD, which could be convenient in 
the simplest cases.  This module was tested here on the same example as above (without 
accounting for population sizes of countries with missing prevalence).  The output was very 
consistent with the WinBUGS output as illustrated by the posterior simulations shown in 
Figure 7, together with examples of diagnostic plots of MCMC convergence. 
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Figure 7: SAS proc GENMOD output showing 3 diagnostic plots: the posterior 
distribution of the average slope (bottom right), Markov chain simulations 
(top) and auto-correlation of simulations (bottom left) 

 
 
The posterior mean of the yearly decrease of prevalence was estimated to be -18.5% with a 95% 
credibility interval of [-10%; -27%].  Although proc GENMOD does not fully estimate a 
random effect model, outputs using Bayesian inference are quasi identical with the WinBUGS 
approach in this simplistic case. 
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Bayesian code to fit a random effect Binomial-Logistic model for trend analysis 
 

 

model 
 { 
 for( ctr in 1:11 ) { 
  for( yr in 1:3 ) { 
     #Binomial/logistic model  
     np[ctr,yr] ~ dbin(p[ctr,yr],nn[ctr,yr]) 
  p[ctr,yr] <- exp(b[ctr]+(yr-1)*a[ctr])/(1+exp(b[ctr]+(yr-1)*a[ctr])) 
  } 
  #random effect of the regression 
  a[ctr] ~ dnorm(m.a,tau.a) 
  b[ctr] ~ dnorm(m.b,tau.b) 
   
  #needed for the final calculation of the EU slope 
  p1[ctr]<- N[ctr]*exp(b[ctr] )*a[ctr] 
  p2[ctr]<- N[ctr]*exp(b[ctr] ) 
 } 
  
 #non-informative priors 
 tau.a ~ dgamma(0.001,0.001) 
 tau.b ~ dgamma(0.001,0.001) 
 m.a ~ dnorm(0.0,1.0E-6)  
 m.b ~ dnorm(0.0,1.0E-6)  
  
 #final EU slope 
 slope<-sum(p1[])/sum(p2[]) 
} 
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APPENDIX D: EXAMPLES OF CHOROPLETH MAPS USING DIFFERENT CLASS INTERVAL 
SCHEMES 

 
 
In order to show the impact of changing class interval schemes, examples of choropleth maps 
using equal-interval breaks, quantile breaks and natural breaks are reported in this appendix. 
 
All the three following maps show the prevalence of the five targeted serovars Salmonella 
Enteritidis, S. Typhimurium, S. Infantis, S. Virchow or S. Hadar in Gallus gallus breeding 
flock during the production period, 2007 (see Figure SA15 in the CSR 2007). 
 
As it is possible to note from the following choropleth maps, the same data can be visualised 
in different ways, depending on the classification scheme used to divide continuous 
prevalence data into categories. 
 
 
 
 

 
Figure 8. Choropleth map showing the prevalence of the five 

targeted serovars Salmonella Enteritidis, S. Typhimurium, 
S. Infantis, S. Virchow or S. Hadar in Gallus gallus 
breeding flocks during the 2007 production period.  Equal 
interval breaks are used as a classification scheme. 

 



  

 
Statistical analysis of temporal and spatial trends 

of zoonotic agents in animals and food 
 

 

The EFSA Journal (2009) 253, 68-77 

 

 
Figure 9. Choropleth map showing the prevalence of the five 

targeted serovars Salmonella Enteritidis, S. Typhimurium, 
S. Infantis, S. Virchow or S. Hadar in Gallus gallus 
breeding flocks during the 2007 production period.  
Quantile breaks are used as a classification scheme. 

 

 
Figure 10. Choropleth map showing the prevalence of the five 

targeted serovars Salmonella Enteritidis, S. Typhimurium, 
S. Infantis, S. Virchow or S. Hadar in Gallus gallus 
breeding flocks during the 2007 production period.  
Natural breaks are used as a classification scheme. 
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APPENDIX E: SPATIAL STATISTICS 
 
 
E.1 SPATIAL METHODS FOR INVESTIGATING GLOBAL CLUSTERING 
 
 
MORAN’S I 
 
The Moran’s I statistic is one of the oldest indicators of spatial autocorrelation (Moran, 1950).  
It is considered a standard for determining spatial autocorrelation and it is applied to both 
point and area data. 
 
Moran’s I is similar to Pearson’s correlation coefficient, and quantifies the similarity of an 
outcome variable among areas that are defined as spatially related. A weight matrix is used to 
define the spatial relationships so that regions close in space are given a greater weight when 
calculating the statistic than those that are distant.  Therefore, Moran’s I can be defined as a 
weighted correlation coefficient that seeks to determine deviations from spatial randomness of 
values across locations. 
 
When no correlation exists between neighbouring values (e.g. disease incidence rates of 
neighbouring regions) the expected value of Moran’s I approaches zero.  Therefore, a 
Moran’s I close to zero indicates the null hypothesis of no clustering, which means random 
distribution of the values across space. Moran’s I varies between -1 and +1.  In general, a 
Moran's I value greater than zero (near +1) indicates clustering (e.g. high disease incidence 
rates are found in neighbouring regions) while an index value below zero (near -1) indicates 
dispersion (e.g. high incidence regions are close to low incidence regions).   
 

Moran’s I is calculated as follows: 
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where: N is the number of regions 

Xi is the variable value at a particular location 

Xj is the variable value at another location 

X  is the mean of the variable 

Wij is a weight applied to the comparison between location i and location j (often it is 
a simple contiguity matrix.  If zone j is adjacent to zone i, the interaction receives a 
weight of 1; at other times it can be a distance-based weight which is the inverse 
distance between locations i and j (1/dij)) 

 
For significance testing, a z-score under the assumption of randomisation is calculated, as 

follows: 
)(

)()(
IESD
IEIIZ −

= E(I) is the expected value of Moran’s I for a random distribution, 

this is calculated as -1/(n-1), where n is the number of features in the whole study area.  SDE(I) 
is the standard deviation of I for the expected distribution. 
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GEARY’S C 
 
The Geary’s contiguity ratio (Geary, R.C. 1954), or Geary’s C, is another weighted measure 
of spatial autocorrelation, but, differently to Moran’s I, it emphasises the differences in values 
between pairs of observations, rather than the co-variation between the pairs.  Its value ranges 
between zero and two.  If values of a zone are spatially unrelated to any other zone, the 
expected value of C will be one, no spatial autocorrelation.  C smaller (greater) than one 
means positive (negative) spatial autocorrelation. 
 

Geary’s C is given by: 
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where Wij are elements of a weight matrix for which a value of one indicates that a pair of two 
observations, Xi and Xj, are in the same distance class d and a value of zero indicates all other 
cases.  X  is the mean of the variable of interest. 
 
 
CUZICK AND EDWARDS TEST 
 
When exact locations of events are known, it is possible to use the Cuzick and Edwards test 
(1990), developed for spatial clustering and taking into account the inhomogeneous 
distribution of populations. The test is based on the comparison of the spatial distribution of 
the case with control locations (controls are selected from the same source population) in a 
study region.  
 
The method examines the k nearest neighbours to each case.  If cases are geographically 
clustered, most of those k nearest neighbours will also be cases.  The test statistic Tk is the 
number of cases that are nearest neighbours (nearest neighbours = k) to each individual case. 
When cases are clustered, a case will have as a nearest neighbour another case and Tk will be 
large.  Therefore, a large value of Tk indicates that cases are spatially clustered in relation to 
the underlying geographical distribution of controls.  Conversely, when all cases have 
controls as nearest neighbours, Tk will be zero. The test allows the choice of the number of 
nearest neighbours (k) to be included in the analysis. 
 
The method includes a significant test for Tk that determines if the actual level of clustering is 
significantly greater than would be expected if cases and controls were randomly assigned. 

The significance of the test can be assessed using a z-statistic: 
)var(
)(
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T
TET
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=  

E[Tk] is calculated as pkn, where n is the sample population size and k is the number of 
nearest neighbours being considered and p= (c/n)[(c-1)/(n-1)], where c= number of cases and 
n= total sample size. 
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When k>1, a combined P-value for all tests performed at one initial alpha level is provided. 
This is calculated through Bonferroni and Simes adjustments. 
 
Bonferroni Pc= j[min(Pi)] 
Simes Pc=  min(n +1-i)Pi 
 
In this case, Pc denotes the combined P-value for all tests, Pi the value for an individual test, j 
is the number of comparisons, and i is the sequential index for the individual test considered. 
 
 
GLOBAL SECOND-ORDER SPATIAL ANALYSES 
 
Global second-order spatial analyses are represented by the global Ripley’s K-function 
(Ripley, 1976) and the global weighted K-function (Getis, 1984).   
 
K function and weighted K function are among the most commonly used methods for 
identifying the distance at which clustering of point data occurs throughout the study area.  
These methods are called second-order analyses indicating that the focus is on the variance, 
the second-moment, of pairs of inter-event distances.  In general, both the K function and the 
weighted K function consider all combinations of pairs of points, comparing the observed 
pattern of points at all distances with the one expected based on a random spatial distribution 
of points.  Therefore, these methods can identify distances where clustering occurs and where 
departure from randomness is most pronounced.  In particular, the K function is used to 
classify spatial patterns of point data (e.g. disease case locations, locations of farms, etc.) over 
the entire study area as being random, clustered, or uniformly dispersed, with significance 
determined using Monte Carlo simulations.  Once determined the overall spatial pattern of 
points (e.g. locations of pig farms) using the K-function, the weighted K-function can be 
applied to evaluate the spatial patterns of values (e.g. disease incidence) within the spatial 
patterns of points previously detected.  Practically, using the weighted K-function it is 
possible to investigate, for example, if cluster of Salmonella spp. incidences exists all over the 
study area, beyond the spatial pattern of pig farms detected using the non-weighted K-
function. 
 
For an isotropic process with an intensity of λ  points per unit area, the K function at a 

distance s can be defined as K(s) using the following formula: ( )ijsji dI
A

sK ∑∑ ≠= 2
1)(

λ  

where A is the area of interest, dij is the distance between the ith and the jth events in A, and 
Is(dij) is an indicator function which equals one if dij ≤ d and zero otherwise.  In the presence 
of spatial clustering, each event is likely to be in close proximity to other events of the same 
type and, for small s, K(s) will be large.  When performing this analysis it is recommended to 
restrict the range of s to not greater than 0.5 times the length of the shorter side of a 
rectangular study area. 
 
The K function is used to classify spatial patterns of point data over the entire study area as 
being random, clustered, or uniformly dispersed, with significance determined using Monte 
Carlo simulations.  Under the assumption of complete spatial randomness m independent 
simulations of n events in the study region may be performed.  For each simulated point 
pattern K(s) can be estimated and then the maximum and minimum of these functions used 
for the simulated patterns to define the upper and lower simulation envelope.  If the estimated 
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K(s) lies above the upper envelope, this could show significant spatial clustering, if it lies 
below the lower limit, this is evidence of regularity in the arrangements of events (Bailey and 
Gatrell, 1995).  
 
A modified version of the global Ripley’s K-function has been also applied for investigating 
clustering around specific foci of disease (Kitron et al. 1992, Mannelli et al. 2003). 
 
 
 
E.2 SPATIAL METHODS FOR INVESTIGATING LOCAL CLUSTERING 
 
 
LOCAL MORAN’S I 
 
The local Moran test (Anselin, 1995) detects local spatial autocorrelation in data aggregated 
by area. It is related to Moran’s I for global spatial autocorrelation.  In essence, the local 
Moran decomposes Moran’s I into contributions for each area within a study region, defined 
as Local Indicators of Spatial Association (LISA).  These indicators detect clusters of either 
similar or dissimilar disease frequency values around a given observation.  The sum of LISA 
for all observations is proportional to the global Moran’s I.  There can be two interpretations 
of LISA statistics, as indicators of local spatial clusters (regions where adjacent areas have 
similar values) and as diagnostic for spatial outliers (areas distinct from their neighbours). 
 

It is given by: ∑
=

−−=
n

j
jijii XXwXXI

1
)()(  

where: Xi is the variable value at a particular location 

Xj is the variable value at another location 

X is the mean of the variable 

wij is a spatial weights matrix 
 
The Local Moran’s I can only be interpreted within the context of the computed Z score.  
 
The Z score represents the statistical significance of the computed Ii value.  It indicates 
whether the apparent similarity (or dissimilarity) in values between the feature and its 
neighbours is greater than one would expect simply by chance.  A high positive Z score for a 
feature indicates that the surrounding features have similar values (either high or low).  A 
group of adjacent features having high Z scores indicates a cluster of similarly high or low 
values.  A low negative Z score for a feature indicates the feature is surrounded by dissimilar 
values - that is, if a feature gets a negative Z score, it has a different value than its neighbours 
(a high value relative to a neighbourhood that has low values or a low value relative to a 
neighbourhood that has high values). 
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GETIS-ORD  GI(D) AND GI*(D) 
 
Gi(d) and Gi*(d) were introduced by Getis and Ord (1992, 1996) for the study of local 
patterns in spatial data.  These statistics indicate the extent to which a location is surrounded 
by a cluster of high or low values (e.g. incidence of a disease).   
 
The difference between Gi(d) and Gi*(d) is that the Gi(d) statistic investigates disease 
clustering only around an area (i) without including the value of i in the calculation.  
Therefore, Gi(d) is a “focused” statistic and it is mostly used to study the spread or diffusion 
of diseases around potential disease foci. Conversely, the Gi*(d) statistic tests whether the 
area (i) together with surrounding areas, within a distance d, form a cluster of values higher 
(or lower) than average.  Gi*(d) is then a more appropriate statistic to study local clustering of 
diseases, compared to Gi(d).   
 
The null hypothesis states that there is no association between the values of X, for example 
the disease incidence, at a site i and its neighbours, the js, up to and including a distance d, 
measured from site i in all directions.  The null hypothesis appropriate for the Gi statistic 
requires that xi be excluded from the summation, while the null hypothesis appropriate for Gi* 
statistic requires that the value at i itself be summed together with the j values within d of i. If 
a spatial autocorrelation exists, it will be exhibited by a spatial clustering of high or low 
values of disease incidence.  When there is a cluster of high disease incidence values, the 
resulting Gi(d) and Gi

*(d)  will be positive.  Clustering of low values yields a negative Gi(d)  
and Gi

*(d). 
 

The Gi(d) statistic is calculated as:
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where: xi is the observed value at location i, 
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The Gi*(d) statistic is calculated as:
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Gi(d) and Gi*(d) are assumed to be normally distributed and can be transformed into a 
Z statistic to test for significance. The local sum for a feature and its neighbours is compared 
proportionally to the sum of all features; when the local sum is very different to the expected 
local sum, and that difference is too large to be the result of random chance, a statistically 
significant Z score is the result.  For statistically significant positive Z scores, the larger the 
Z score, the more intense the clustering of high values.  For statistically significant negative 
Z scores, the smaller the Z score, the more intense the clustering of low values. 
 
 
TEST FOR LOCAL SPATIAL CLUSTERING BASED ON SCANNING LOCAL RATES: SPATIAL SCAN 
STATISTIC 
 
The spatial scan statistic is a test for investigating local spatial clustering based on scanning 
local rates. The general statistical theory behind the spatial scan statistic is described in detail 
by Kulldorff (1997).  The spatial scan statistic uses two different probabilistic models, based 
on the Bernoulli and Poisson distributions respectively.  With either model, the scan statistic 
adjusts for the uneven population density present in almost all populations, and the analysis is 
conditioned on the total number of cases observed.  These statistics are performed with the 
software SATScan, which uses a circular window of different sizes to scan the study area. For 
each location and size of the scanning window, the alternative hypothesis is that there is an 
elevated rate (e.g. risk of disease infection) within the window as compared to outside.  The 
likelihood function of the chosen probability model is maximised over all windows, 
identifying the window that constitutes the most likely cluster.  This is the cluster that is least 
likely to have occurred by chance. 
 
The likelihood ratio for this window is noted and constitutes the maximum likelihood ratio 
test statistic.  Its distribution under the null-hypothesis and its corresponding p-value is 
obtained by repeating the same analytical exercise on a large random number of replications 
of the data set generated under the null hypothesis, in a Monte Carlo simulation. 
 
 
THE JACQUEZ’S K NEAREST NEIGHBOURS TEST (JACQUEZ, 1996) 
 
This test compares spatial distance to temporal distance and it is used for investigating space-
time clustering of point data (e.g. disease case locations and dates).  The k nearest neighbour 
statistic is the number of case pairs that are nearest neighbours in both space and time, and it 
is evaluated under the null hypothesis of independent space and time nearest neighbour 
relationships (i.e. that the probability of two events being nearest neighbours in space is 
independent of the probability of their being nearest neighbours in time).  The statistical 
theory behind Jacquez’s nearest neighbours test is described in detail by Jacquez (1996). 
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APPENDIX F: DEFINITIONS OF CERTAIN TERMS USED IN SECTION 5: SPATIAL 
EPIDEMIOLOGY AND APPENDIX E: SPATIAL STATISTICS 

 
 
Spatial and space-time clusters: unusual concentrations of disease cases or other health-
related events in time and space.  In particular, spatial clusters refer to the aggregation of 
health events in a certain geographic location, while space-time clusters refer to the 
concentration of health events both in time and space.  The number of cases in the cluster may 
or may not exceed the expected number.  This is determined by spatial and space-time cluster 
analysis, a set of statistical methods used to analyse clusters.  
 
Complete Spatial Randomness: a situation when an event is equally likely to occur at any 
location within a study area, regardless of the locations of other events. 
 
Database Management System (DBMS): software that allows a computer to perform 
database functions of storing, retrieving, adding, deleting and modifying data.  Relational 
database management systems (RDBMS) implement the relational model of tables and 
relationships. 
 
Geographic Information System (GIS): system that allows the capturing, storing, 
manipulating, analysing and visualising of georeferenced data.  It is built on five major 
components including hardware, software, data, people, and procedures. 
 
Georeferenced data: data that can be referred to a location on the Earth’s surface by means 
of geographic or projected coordinates. 
 
Monte Carlo (MC) simulation: is one of the methods for assessing if an observed pattern of 
event locations appears to differ significantly from complete spatial randomness.  Many tests 
for clustering use the MC simulation in order to determine the statistical significance of the 
cluster.  In general, the test statistic value is calculated first based on the data observed and 
then, using the MC simulation, calculate the same statistic for a large number of datasets (e.g. 
99, 999, etc.) simulated independently under the null hypothesis of interest.  The proportion of 
test statistic values based on simulated data exceeding the value of the test statistic observed 
for the actual dataset provides a MC estimate of the p-value for a one-sided test.  Using more 
simulations to estimate the distribution of the null-hypothesis (e.g. 999 versus 99), means that 
smaller and more stable p-values can be calculated. 
 
P-value: the p-value for a hypothesis test is the probability of obtaining a result at least as 
extreme as the one that was actually observed, given that the null hypothesis is true.  The p-
value expresses the probability that the observed differences could be due to chance, and not 
due to the presence of the factor being evaluated.  P is the probability of making a type I (α) 
error.  The p-value for a test may also be defined as the smallest value of α for which the null 
hypothesis can be rejected.  A p-value is therefore a measure of how much evidence is 
possessed against the null hypothesis.  A Type I (α) error is the error committed when a true 
null hypothesis is rejected.  A Type II (β) error is the error committed when a false null 
hypothesis is not rejected. 
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Scale: the ratio or fraction between the distance on a map, chart, or photograph and the 
corresponding distance on the surface of the Earth.  
 
Spatial epidemiology: description and analysis of geographic variations in disease with 
respect to demographic, environmental, behavioural, socio-economic, genetic, and infectious 
risk factors (Elliott and Wartenberg, 2004).   
 
Spatial weights matrix: describe how observations in a dataset are spatially related to each 
other. Spatial weights matrices are required in statistical methods to take into account spatial 
dependence of the studied objects.  Different types of matrices can be calculated.  A binary 
contiguity matrix describes whether or not spatial objects (e.g. farms, regions) are neighbours.  
The information stored in matrices can also be more complex, for example, parameters such 
as distance, or length of a common border (Haining, 2003). 
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ABBREVIATIONS 
 
BEAST Bayesian Ecological Analysis of Statistical Trends 

CI Confidence interval 

CSR Community Summary Report 

DBMS Database management systems 

DSN Dedicate Surveillance Network 

EC European Commission 

ECDC European Centre for Disease Prevention and Control 

EFSA European Food Safety Authority 

EU European Union 

FAO Food and Agriculture Organization 

GEE Generalised estimating equation 

GIS Geographic information systems 

HACCP Hazard Analysis and Critical Control Point 

i.i.d. Independent and identically distributed 

LISA Local Indicators of Spatial Association 

MAUP Modifiable area unit problem 

MC simulation Monte Carlo situation 

MCMC Monte Carlo Markov chain 

MS(s) Member State(s) 

N Number 

NUTS Nomenclature of territorial units for statistics 

OIE World Organisation for Animal Health 

OLR Ordinary logistic regression 

pop Population 

pos Positive flocks 

PSU Primary sampling unit 

TESSy The European Surveillance System 

VTEC Verotoxigenic Escherichia coli 

WHO World Health Organization 

wt Weight 

ZCC Zoonosis Collaboration Centre 
 


